Question 1
According to supply-side economists, as tax rates are reduced, labor supply should increase. This implies that
◦ the income effect of a wage change is greater than the substitution effect of a wage change.
◦ the substitution effect of a wage change is greater than the income effect of a wage change.
◦ there is no income effect when tax rates are changed.
◦ there is no substitution effect when tax rates are changed.
Question 2
Refer to the information provided in Figure 32.1 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADMAPQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKZKGK/IQD70AfngP2x/8Ajar/AMIb9s/4pT+zv+EP+/8AJ9u/4+N+P7/2j/R6/RKvzGP/AASNuf8AhcH9v/8AC6L7/hI/P/4SD+0f7BTf9r8/fvx9o/v/ADV+m0YIQAkFu+KAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXz38d/H3j7T/jn8JPAPgrXdM0SLxRFqtxqU99pn2x4YbSKN1dB5qfeZwn/As/w4qz4Y+K3jHwR8c9K+GXxCm0nWV8Rabc6h4f8AEOkWb2XnPa7PtFtNbvLLh1Rw4dXwR/CKAPV/+ai/9wr/ANrV0lfnvqX/AAVt+Emn/HJ9OGnazdeHI0OnP4kijQw7vN/1yxbt5i9/vY/hr7w0XxTo/iS3SfSNTs9TidQ6vZ3CSgg9/lPvQBsUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHyF418fDQ/2549a1Xwx4tudB0Hwa+l2l9pvhu9vYZL+4uUkdUaOJgf3SINw4zkZ610Xgzwj4m+N37Qlv8U/E3hq+8K+DvDek3Ok+GdI1lFjvryW5K/aryaIMTChRFjVH+cj5iq9K+msCloA/JTVf+CM9zN8aHsLHx1a2/gZz9tG+3dtQjt/Mx5I/gL/AMO8t77e1fqJF8OvDSaLp+lSaJYXVlYQR21vHdW6TbEQbUHzg9qf/wA1F/7hX/taukoA5Q/D2wtfm0u71LRXH3PsN2/lJ9IX3w/+OVEW8WaDklLfxPbL/wA8gtpdhfoW8uRvxhH1rsKKAOd0DxlpniGSa1hkkt9Rt1zPp93G0NzF7lDzt9HGVPZjXRVha94U03xLCkd9BvaF98NxE5imgfpujlQh0PbKnpxWIdb1PwO23XpW1PQz01tYwr2y/wDTyi8Y/wCmyDH99UC72AO4rlPiB8SvDXwt8PNrfinV4dI08SJAkkgZ3llc/JHEiAvI7dkRSx9K6eOVZkV0IZCMhgeDXytqwj8b/wDBRbS9L1199j4R8ENrGhWMv3DeXFz5M1yo/iKxqE9t1AHqng39pXwZ4x8Z23hGOTV9F8TXUL3NnpniDRrvTJryFOXeH7RGgkCjk7eQO1es1yWr6V4X1bx34cn1IWUvirS47m50lZZlFzGjoIrh0TOSuHRWOMfMvtXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWfqWsWWkpE99dwWccsixI88oQO7fdRc9SfSpoLyC6eURTRyNE+yTy3DbG9D6HmgDF/5qL/3Cv8A2tXSVzf/ADUX/uFf+1q6SgAooooAK8Y/bB8UeLvBP7NXxB1zwLHI/imz00vatEm94l3oJZEH95IjI491r2emsoYYIyKAPwU/YK+P/wATdB/aW8JW1n4j1rU9BvbjZrVjNPNdW4sgpM0zochfLQF94+7t9OK/Z74m/Arwl8Yr3Q9avmvtO1/SQzaX4i0G9e0vrZXHzqkydUYfwNlfauq8PfDrwr4T1C91DQ/DGkaLf3p3XV1p9hFBLcH/AG2RQX/GsvTx/wAIBrsWl/d8O6jJiwx0sp+pt/aN+Sno25P4o1oAofDn4F+GfhnrF9rVkNQ1jxJfxrBda/r19JfX0kQO4RCWQnZHn5tibV3c4r0iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+fv2oPBOm+LLzwxcat4Pg+I+nWcN/FceFVeFryRJEjU3lpFMyo80O0L95SFuGKtuwGofsjweMLgeIdY8Y6VP4b1S9sNJhk0rUJ42vp5YIHhk1C4iQtsM7JsG45K2o6dBz/7UPg3wT4O8RaP4u1KX4janrk4ukh0Xwt4pvrbzFdofNmybqJII0PlqdjIp81RtY7MdZ+zBYwWPiDx3GfCPijwrqUJsre4PjDxLJrN7coEldGUvcTbIV81tu18Fmk7qaAPYP8Amov/AHCv/a1dJXN/81F/7hX/ALWrpKACiiigAooooAKyfEOiWviPSbvTbtWMFwu0tGcOh6q6Hs6kBgexANa1FAHL+CdZudS0+a11Ig6zp032S82rtV3ChllVeyujK4HbdjqprqK4zX1/4R/xhpGsplba/I0u+2j5QSSbaQ/SRmj9zcLn7ox2Q6UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB85ftV3vhnStc8FS+M71NE8J6pFqvh/U9an1JLSK0hurZdqkFSxLSww4cFAjIMt8203P2ZdR0DVtZ8XXNh8XLb4x695NjHe6vYi28i2tk89baH/AEbMZfd9od2zkl84Vdor1fxFpfhXVfEugDWrXTLrXIWnk0j7cqNcIdm2Yw55+4w3bexqt4a1vwjeeNfEmlaE2nN4i0yK1XWEs40EsKv5jW6TMo6481gh6B88b+QC/wD81F/7hX/taukrm/8Amov/AHCv/a1dJQAUUUUAFFFFABRRRQBi+KtEPiLw7qGnJKIJp4iIZyM+TKOUk+quFb/gNO8La0PEXh7TtTEZgN1bpM0DHLRMV+ZD7qcr+Fa5G4Vy3gUCz/t7TOq2GqzKrf3lm23I/L7Rs/4BQB1VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHhn7S/gnWvHdpoWnaVb6Dplvuma78Yat/wAfXh4Dy8TWRDKVnb5gG3Ko2hm3Bdj0f2Y9BtPBOo+KfCtlH4f1K302KzlbxRpd0J9Q1l5XuWMmoN97zxtyclgd5K7Q2xOR+KujXP7XHw58Fa9pPhK9n8P6hpWpahY6b4jEMapebI3064uId7hkcJKq9Sv2hSVU/d7L9mXR0tNY8aanpnwyn+Fegag9n5ej3lpbWssl4iOtzKqQFl8vHkqDu+Yo7Y5ywB6z/wA1F/7hX/taukrm/wDmov8A3Cv/AGtXSUAFFFFABRRRQAUUUUAZPifxNpXgzQL/AFvXNQg0rSLCJp7q9upAkUMY6szGvA/gR+2L8JPjj8VNf0PwZ4uh1HULiGG4itbiCa2e4dFdZfKEqLv2okR+X+Hns1dP+198FdR/aG/Z38YeA9J1GPTtT1OKGS1lmLLGZIZkmVHx/C5j257Z3c4r86P2Hf8Agnj8WPAn7TmieIfGtlD4X0/ws66jJsvoppbveJUjRPLZvlYo+7dj5VPrQB+jPxW/aA1D4f8AxT8M+A9E8Can4z1nXbC51KD7DfW9ukccDKsu8zOu376YPfdgVe+D3x3i+Kvibxl4WvfDWqeE/FfhCS0XVdM1F4ZlVbmMywPHLC7o4ZUb3FeLeKbST4h/tzeIUtPHM3gyLwj4JtLKe6sPsrXG67uZJnQNOjhPkhiJO3P3fWrn7C1xBa+JPjVomm6lF4x0nTfEUIt/H7HzbnXpJLcPKlxMDsme3OI9yYXHRRQB9cUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8gfs+/syT6z8FfBs2p+O/jB4V1SLS4La80afxDNafZJo0WN0SIpxHlDs28bNuK9u+EnwRi+E2ueIdQj8WeJvFJ1eK1ib/hJtRa+lg8jzvuO3IVvO6e3vXqAGKWgDm/+ai/9wr/ANrV0lc3/wA1F/7hX/taukoAKKKKACiiigAooooAK5jSf33xA8Qyr91LOyt2/wB4NcP/AClFdMelcr4Jb7ZceItSHMd5qsqxq3VRAqWzf+PwOf8AgVAGZrHwI+G3iPU7nU9V+H3hbU9SuW8ye9vNFtpZpX/vO7Jlj9a6vQ9A03wzpcOn6Rp9rpenQLiG0soEhijH+yigAVp0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHN/8ANRf+4V/7WrpK5v8A5qL/ANwr/wBrV0lABRRRQAUUUUAFFFFAGP4p1yPwz4e1LVJI3nW0t2mEEf35WA+VF92OAPc0zwlojeHvDOmadLIJ7i3gVZ5gP9bL1d/+BPub8ayfEr/274m0fQVG63hddU1D2SN/9HQ+heYBx6i3cV2NABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc3/zUX/uFf8Ataukrm/+ai/9wr/2tXSUAFFFFABRRRQAh6V+df7U/wDwVgX4G/GbUvA3hrwVD4hTQ5Vt9Tvr+9e38yXapeOFVU425272zzn5ccn9FD05r4A+Of8AwTT8FftR/GbXPHOn+IdQ8LW1xIsWovbQJcRX92mEkeHONgXbtZvmDPu4Gw7gD6g/Zk+JGnfG/wCFGm/EywWSP/hJ2kuXil+9b+VK8HkZ/iCeURnoW3uPvV6F4X8ZaF40t72fQdVtNXgs7ubT7iW1kDrFcRttkjOP4lPWvnD4t3Vj+yl8AvB/wm+HEOqwanqrnR9MbTLR76+tLbd5l9qAijXLuiu78DHmSp2rmf2L9R0HwT8ePir8O/DOk614e8K3VjpviPRtM1zTZ7GaM+X9kvH2TKrtvkihff3LGgD7TooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOb/5qL/3Cv/a1dJXN/wDNRf8AuFf+1q6SgAooooAKQnFZes67Y+HrJ7vUbqO0t1wN7nqx4VR6sTwAOTXNvFq/jxtsqXGheHG48okx316P9rvBH/s/6w558rBVgBNS1O68c3z6To0rRaLG7w6nq8EmGLDhra3I/jzw8n8GCq/Pkx9fp9hb6XZQWlpClvawIscUMa7URQMAAdhSWNjb6VZw2lnClrbQosUUESbURRwAoHQVcoA87/4U9ZN8bI/iVNrOqz6pFpL6LBpkjQtZQQO6O5QeVvDl41Jbf7fdwKr3HwR064+O1r8U21vV11m20h9ESwUwiya2Z97Kw8reTvw+d/VfTK16ZRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE6t4j0rQPiBGdU1Oz00S6YVjN3OkW/E3ONx5rRPxJ8IqMnxVoq/8AcRh/+KrT1fQ7DXYkjv7ZblEO4KxPB/CsuL4ceFU2v/wjmlvIvIkltEd/++iM0AYWqfH34eaTdyWr+MNKurxBl7SwuBczJ/vJHuK/jVCT4rprOFstW0DQbc9bvVdSgmm/4DDFLj8WlGP7jdK9NjiSJFRFCKo2gDoBUtAHm+kaj4G0++i1G78XaZrOrICFv7/UoGdAfveWqkJGGHXYq575rpP+FkeEv+hp0X/wYw//ABVdJRQBzf8Awsjwl/0NOi/+DGH/AOKo/wCFkeEv+hp0X/wYw/8AxVdJRQBzf/CyPCX/AENOi/8Agxh/+Ko/4WR4S/6GnRf/AAYw/wDxVUtR+LfgXSL6ax1Hxn4esL2Btkttc6rBHLE391lL5Bra8P8AiXSPFVj9u0TVLPV7LcU+06fcJPFuHUbkJGaAKX/CyPCX/Q06L/4MYf8A4qj/AIWR4S/6GnRf/BjD/wDFV0lFAHN/8LI8Jf8AQ06L/wCDGH/4qj/hZHhL/oadF/8ABjD/APFV0lFAHNN8SPCSjJ8U6L/4MIf/AIqj/hZHhL/oaNG/8D4f/iq6TbRgUAc3/wALI8Jf9DRo3/gfD/8AFUf8LI8Jf9DRo3/gfD/8VXSbaNtAHN/8LI8Jf9DRo3/gfD/8VR/wsjwl/wBDRo3/AIHw/wDxVdJto20Ac3/wsjwl/wBDRo3/AIHw/wDxVH/CyPCX/Q0aN/4Hw/8AxVdJto20Ac3/AMLI8Jf9DRo3/gfD/wDFUf8ACyPCX/Q0aN/4Hw//ABVdJto20Ac3/wALI8Jf9DRo3/gfD/8AFUf8LI8Jf9DRo3/gfD/8VXSbaNtAHNn4j+Ev+ho0b/wPh/8Aiq+HfAf/AAWJ+HV54jvtE8d+HdT8LPbXUtsNUsT9vtGCuV3sFVZFzjOFR6/QUrxXxZ8OP+CU3we8MeIr3xB4qjvfHuq3N1JdeTqL+RZRMzl8CCM/MOejs49qAPf/AAr+098I/HWjQ6to/wASPDM9lLkBpdShhcHqQySMrKeehFFd34c8H6H4N0iDStB0ex0XTIBiKz0+1SCFPoiqAKKANuiiigAooooAKKKKACiiigAooooA+Ov2pvgn4C8LXXwpn07whpMN1rfxX0y51K5e1SWW8ed53m82R8sys38BO3gADAxWf4/+N+nfska/45s/Bng7wd/Y1jOmtah4e0O/ujqc4eGLzrloYbd4LPAXhHYK4jLZXfU3/BRvxjqnhj/hTH9nypF5Xi2HVBuQNma32+XnP8P718jvmvA/2gfGGu+CP2h/jV8HtF1SSz8KeNrC51/U5liiN4szWGZI45SnEbiMKQQxAztZSc0AfV3xH/a31b4deKBp0/hGO9svEelQ3XgO7trqR/7evpCirYyYi228n7xGySV2Hdnhse0+J/EPiLw58LtS1uPSrG78T2GlSXZ0wXjrbPOke8xibZnZkY3bPwFfnH4D1aX48+C/icvjNItSbwf8OLIeHZFTy20mVLdZvPtyPuTNIkTF+v7pAMKCD9c+EviRr3iP9hA+MdVuxfeIJvCdzNNcyIB5sgidd7KuBk4ycY5oA5jw3+2f4s8RaX4TubrwdoPh7/hObL+0/Dkmra+YoYLKKPdd3V8/lfuwC8Plom4v5y5KYYi38OP2yvEPjjxh4I0uXwro66Br+v6n4e/4Saz1WR7K4mtIfOSS03QjzEmUOqZI+eJxuPy5+aPHkSaX+wR8HfiwkNrdeKvAEc+m6Wl9aQ3NpNbl2tzHPDIjK+UgjO4bWDLlSK9tuZ9U+Kn7BN94717W72TxRZwSeLdKvbZIIf7JvLMg262yLGFWMeWQQwYsJJAWO6gDvdZ/a51TTPE+s+HovD+kPqEviifw1oNxc6wYbS4S2tluLy7uZWi/dJCrhGVd5aQMg/vVz8H7Z3i670IXWmeCtD8TSp43g8HLqOma266bftPFmKa2mMJyqyMscnXbtbbv6Lx37THwm0HwN+yF4G8V6fEbjXvBEQ16wudRihuxdXN3hro3KSIySiV5WduAdwUgjFcVa/FPxR45/Z++B3i/WNTE95q3j/TLj7DFaww2dmIZCqRQRog2pn5juLMT/FjigD3zxF+1T448D6P8R7XX/B+i/wDCT+CrrRHnWx1SaSyu7HUZvKSSJmhDiRCkgKMAPlzurtfiL+0ovwu+Lep+H9d0yGPwtp3gm68XzarBMz3H7iZUeLytuPung7uT6V88fEaz/wCFi/Gz9q7wxqU0kOmv4QsJQbXasiPYoJ7d1Yg8iSdyfXj0ryr4D+Odc/au+Kfgy6+Id9/aKeM9A1/wbqVtawxwRLZRQrNvj2ruWVpFDFiWHYKo4oA+lk/bS1/SNcsLXUvCmj6o994f1DxA+i+GdYe+1HR0t7b7Qkd8PK2I0vyxjHRzhd4+avRP2aP2gb3472uo3hl8J6jpkVvbTwXnhXWWu2R5N++C4hkRJIXTavLDD7u2018c/sgePPFXi7UfiP8AD6DxBL4Y0TwPYXdvYz+HLGzsrm6ZImjimuZFhPmSIPmBAUFuWDV6r/wTj8WXXxo1r4i/E7XrWwtfEwaDw/J/ZNolpBPDE0kgmkRB88zM3Lk9AAAoGKAPuiiiigAooooAKKKKACiiigAooooA/9k=)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAJcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigDwz9sj4w+KfgR8Hv+Ew8K3Ph+3uINUsrS5/4SS0lmtvJnnSEuWjniMewyByxLDCkYGdw5v4eftE6r4h+Kfhbw0vxF+HvjnS9XuL2I3/hjRdRgWcwWgmMUE4nubUyIWRnDTg7GwF3Cu7/ac+Cer/H/AOHMPhXSvE9r4TI1K01GS9udKbUCTbyrNGqIJ4gv7xEySW+XIwCciPxT8Etc8SfFb4a+N4/EejWE3hZribUbWLQXJ1We4tlt5pA/2oeSPLUBAwlK7VyzgYpRv17/AIWX638/kL7V+iX43f6W8v1TxN+1p8MvCWsXGm3uq6xcTwamNFeXS/DOqahbm/OP9EWe3tpImnycGJWLA8EZ4q54a/af+HXi9vDa6TqmpXZ8RwXlxpJ/sDUUF2trvFwqloBh08t/3Zw542qdy5+G/FXizxrp3xo8T634IPww1nULfxXPPp/w+8R3mo2viJrvzfKM66Lb3H2VpMFpUvHj8wxYmdl52/Sngf8AZD8ZeCNb8Bajb/E6xnh8G3msTadp9z4cLxtDqBZpI5nS6QySIznbKAgI/wCWYyacU3TjJ7v/AC/HXz2013NJJRnKPRP9X+lvm9t0d34Z/bL+DvjLT7y60PxgNUa0aOKWyttMvGvRNJJKiQLa+T5zTk28x8lUMm1C+3aQx6iX4m23jf4XXvijwP4g0iwgiMgk1XxNZzxW+nCGQrcm5t3aCVGjCPlHaIgjJIFeI/8ADDd5qHwN0bwBrXjDRdWutD8SP4i069m8Jo9lIXkkkkt7uykuHFxGxmkGd6MBs5yuT6/4c+Fmv+B/hfbeHfCWo+DfCGtQ3X2jz9C8IfZtIcF8upsFu9w3LwWWcHcN3+zSkt/l+Sv263XfTS4paSXLtr69fl2+/U4X4NfGTx58bfhXearout+Bzf2XiO/0uTxRa2ct3pM1lb7ttwlqLxZFZzsG0z4AzJkqVB7T4G/FXxJ8R/gVYeM9V8PRT61NFcPFZaLKqxamscjpFNbmd1CJOFDoJH4V1yxHJ848afsh+KNZ8G+ILDw38Tbbwn4g8Wa2Nc8U6mnhmO8tdSYRJGLaOzlnKx25EY3JI0xkywdmDEHuPh18Lfi34TttEj8QfGeHxYbH7YLlZPCNrZRXgkiVbVSsMgMawOGbCEGQNtJXANUpJxaas7L71HW3q/JK/S1iLtNddX8ld2v8vV7a7l79nb4u638YNH8Y3WvaPY6Fe6H4nvfD/wBisLp7lFFsI1ZjKypvJcuchEGCoxkEkqt+z38F/E/wbfxkuueLtJ8T2/iPXLrxCUsNBk05re6uGDSqGa7n3RfKNqkBhzlm4wU5cunL2X32V/xuN/FK213b0u7fhY9hoooqQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z)
Refer to Figure 32.1. A cut in tax rates will decrease tax revenue if the economy moves from Point
◦
A to B.
◦
B to A.
◦
C to B.
◦
A to D.