Question 1
Four hundred accidents that occurred on a Saturday night were analyzed. The number of vehicles involved and whether alcohol played a role in the accident were recorded. The results are shown below:
Number of Vehicles Involved |
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCABEAV8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7t8T618VNR+MGs+GfC3iPwfpWlW2j22qW66x4aur2ctJJLEY3kj1CFcboSwYR8BwMHbks8FfH681bwvoba7pFtp3iWbxLJ4V1GCB7mWyS6ikZJJIpo7eTCuFDIs3lAlthkBGTpeKfhp49ufipeeLvC3jbQdFtbvSbbSpNP1Tw1LfugilmkMiSpewgMxmIwyMBtXg85zr79n7UdL8E+HtB8I+KYNMurHxAviPUdU1zTG1GXUrkzNPMzKk8AjMkjMTtyADhVXAISv7va6v/AOBau++kb6fqVWad3T3tp68n589vLe4nxB+Psek+PvB/h7w3eQXjXmvx6Tqv2jRruW3KsHV0gvlK26zxumGjzIw5BVcZr03xn4hk8M+Hbm8t4Vur9ilvZWzttWa5kYRwoT2Bdlyewye1eSzfs++LLZbLT9L8f2Vv4e0zxGPEWn2V3oDTTKzTyTS280yXSCWMtM5QhEZMLuMmMV1vxN+EkvxT8S+H01uXw/q3gSxMkt/4W1vQftwvpypWOTzGnEa7M5UNC/JY9dpXKKk4tPS7+5Wj69b99fInVzv0SX33lf8AC3bQ55/jLr+rfs+f8Jrp8Wlab4n0+QW+r6dcxSXUNvdQ3HkXlsNskbAhlcK5Jx8rbXB57jVfi74X0XxbD4bubu8OpySrA7W+mXU9rbSModEnuY42hgZlZSBK6khhjORXkEn7Kev6Jp3xH0TwZ4q8L+DfCfiuSGaz0Ox8IOINJlQRo0kapeojNIka7sIgLANj7wbvND+EviTRPEWvSjxXp114c8SP9r1rS5dFk85rprdIJXtbgXQ8mNhGhEciTFeQHxVtybbXbbz7eS+/Xpq2Tazt0/TXXzf3X76JGX4p/aO0LVPDXie38Ea5bJ4tsdHudX00a7o14tnfxwLueS3ZvJW7i6AvbyMF3qScEA7fhD9oPwh4gSS0vNUOm6tZaNHrV8L6wubO2+zFV3zwTTIsc8IZgN8TuoyMnkVxF5+zN4o1Tw5baXqHxAsr6XRNFutD8O3cvh477WO4hWB5rvFz/pMwhUqGjMC5ZiUbgDT8R/s5ap4uj0CPUvF1vELXwpdeF9Qk0/Smhkn81oHS5t2a4cQMkltG21xMGGRx1C95Tl2tp6+908/dW/z3HK/LG293ft9j7/tNPTzRY8U/tE6bqvg7xFd+B9Sij8Q6CLa6utN8SaJe2srWskoXesE32eQo4DhJ13R7lP38EVs/H/xZ4v8ABmgaFe+EdT0DTJbrWrLTLqTxBpc17GsdxOkPmL5d1BtKbixySGxj5etcn4p/Z48YeM9M8QXmqePdIfxlqWmRaJBq0HhlktLSzSfzmxbG8LNK7Yy5mCfIuIxgg9j8Wfhz4u+IXhzw3ZaV4p0bRNR03UbPVLu6u9BlvIrma3kSVRHEt5EYkZ05BdztOAQRuq4q8ouW1439L6/+S7rve193L5ve5ezt62679eva17bLzDwB8f8Axv4mvGK6p4P8UeHrfxRY6RH4q8P6fOtjrFvcRfvFts3UgSWCTAaQSTI2du1WU49bn+OvhCzl8RRXU+rWc+gWkl/ewXWgahDI1tGcSTQI0Aa5RSQC0Accj1FR/GD4eeJPiJouhWmheJ7Dw1d6fqdvqM13c6S975vlHOxFFxF5eT/ES+B055rzz4cfs8xfBDxFB431vxX4eaCx0C40rXNQl0UWT30O+ORLq6u5Ll2aRfKJkeUurb2KiIZFRHm95Sfez/7cVn6cyd+ut9Bu/MnFX0Wn/bzv8+Vry0+R6l4X+MXhjxlf6HaaTLqc0mt6V/bVjJNot7BFJabgodpZIVSNiSuI3KuQynbhgTZX4oeH/wDhOU8ISSaha63IGMC3ek3cFtclV3ssNy8QhmYKCxWN2IAJI4NY/wAEPhzafDvwn9nsr86lYzOx02Rowv2bTd7vaWo4GVjSQgEjPzHOetcLof7L95o3xS0fxs/iTS73UdM1m/vlu7jQS+oXFndJKptJbtrkufL80BCoWNVjUeSSAw0TvJXVlr6rt/wfwCXMk7av8PPr16eqv1YfF34j/EDwz8YtN8O6R4t8C+GfDl9olxqYu/E2i3NxLHNFPbwLCHS/hVzI9yMAKCNuAHJ46Hw98dD4f+GnhvVfiXYz6J4q1CCWSfRtE0q+v5sRuVaZLaKKS4SLbscl1GzzFVyDTfHnwMv/AIifFKPW9X1bRL3wY+iXOg3fhu60SV554J3ildhdC7UI4kt4irCH5Rn+LDLCnwb8dafNoOq2HxIt5vE+l2dxpMmo6toRuYr6xeVHj86JLmMm5Ty1/fq6qxLkxfNgSm1FK3e/feX5rl67dLrVu/M36W+5X/XpvbWzbWhp/wAZbW88YfbU1/Q7v4dXXhga/aapCjBkAlCs7T+aUeNlYEAIpUg5LZwK3i34xT614A13W/AepWOnXmgl5NQg8XaJfwTKFjLpF9lfyJlMvyhJSCOcqknSuL1n9j6bU9FHhiLxdbReDW8My6BLZzaIs15LM84uTdtMZhET56hjEYNrKXU/eBXs/hn8CD8PPCA0eK08B2U0mp2l9cyeGPBx0e3uFhkRwWhju2zNlAVl3bVOP3bAbTKjJx5ZO2+u/wBt2+6Nn5rTfQabjK71Wn/pKv8AfK68t+zLEviLVrv48/Da2nN1plvqHgvXb680fz2MS3CXWiBN6jCu8YmmUMRkCR8Y3GvV68q8R/8AJ0/w8/7EzxL/AOl2hV6rWr1egkmkk3chvGuEs52tI4proIxijmkMaO+PlDMFYqCcZIU49D0rh/gx471P4g+G9XvdWgtILuw1/VNIxZKwjZLW8lgVvmJOSIwT7noK7q4WVoJBA6RzFSEeRC6q2OCVBGRntkfUV5x8Dfhp4k+F+j65Y+IPEuleJDqOr3erxyaZo0mneTJdTyTzKQ91PvXfJhcFSAMHceaceW0r79PvLbXJbrf8LP8AWx6XRRRUkhRRRQB5b418TeP/AAn488Nywnw/qXhPVtVi0ltHjtJ11SMOjsblLnzvLcIEZ3i8kYRHPmHFepV5VdfD74iSfE+XxLF4z8LyaTvWK10698LXEtzZ2vy+ZFFOuoogd8ZMphJJ2ggqoUeq00rRWv8AWn/Bfza2SHL4tNrf5/8AAXyvu2Fch8U9fvvDHhG51O08Q+HPCUNvh7nXPFKNJZWadNzIJod2WKrzMgG7PzfdPX1zXjfS/Feo2tsfCXiHTdBvY3PmHV9IfUbeZCOhjS4gcMOxEmOTkHjESTasgW+pznwh+Ky+M/gppfjrxBe6NawS289xcahp1zusGijldBOjsTtRlQPtYkru2kkqaoTftR/De10PxBq11q+oWNvoEUVzqUN5oOoQXVvbyMVS5Nu8AlNuSG/fqhjG1iWwpxdT4F6Unwp8Q+CUvrq3XXZLu7vNStQscq3VxI0rzRrgqm12BVcEAKMljknjPFv7Ovi3xzofiqXWPHmkyeL9a0QeHItWg8NNHaWliZDJLi2+1l2mcnlzMEBVMRjBDO8nK7Wn9bfO3Raa+RFmo6f0r9flr1108z0HVPjj4O0Xwhc+KL2/vLfQ7W+GnXFy2lXeYJSwUF0EW9IyWU+aQI8MrbsEGse4/ad+HdnJfR3Wp6nZvp92llfrdeH9RhNg7/6t7ndAPIif+CaTbG/O1jirfxU+HHib4mfCR/Cw8S6TpuuXP2c3erHRZZbZzHIsjeXbfalZAzIMZmfAyPm61zPiL4DeKvFU3xPF/wCNdLFp4y0e302GG30GVTYSxIyiYk3jCUEyOSgCEgIN3yks4/HaW3f+vnb18tSV1HTV/wDD/wDA/HvZdf4j+PPgfwn4nj0HVdYktbxriKzkuRYXL2NtPLgRQz3axmCCR9yBUlkVm3rgHcM5p/aa+HS6hf2D6xexXtjfy6XNbyaLfJJ9sRUb7OqmEF5XWRGjRctKDmMOOawNV/Z513XjrGl6h4ztZfCPiG9t9U1zSk0UiaW6QQ+attO1wwgt5WgUmN45XG5wsgyCMbxd+yxrPj/RfG2meIvFegalb614jg8TadDL4V82C0niSOIQ3MM11Il3C0UKKy4iOS7BlyoSFzWV+2vreN/w5rd7K9ikrt6/1rv+F+2u50fib4l23i3xF8Fr3w1ql7Hp2oeMbuwv7d4p7KVhHoerSG3ubeVUkUrJFE/lyqCGRGxwpr13VBenTLsac0C6gYX+zNdKzRCXadhcKQSucZwQcZxXgl98P4fhnqXwA0OGx8N6f5fja8keLwpoY0ewLN4f1klkthLLtJ7necmvoWrklsmKLe7R4T4F8SfF3Ufib4m0TWfE/ge60jw1NZfa/snhi8s5bqKeLzHKSNqUqxMgzjKOGx/DnI6E/tNeAZl1ZLPUb27u7HTptUit/wCx75DqNvFjfJZEw4vEBK5a38wDcpPBGZ/Dnwp1uw+IHxC1rV/EOnalofiyOKIaZaaTJbXFqscflLm4NzIJPkJziJMsQRgDBwfDf7PWqwyaJH4o8Yx+IrPw3pdzpOgiDSRazxRzQrA0t1IZZBPMIl2hkWFTuclCSMYP2vJK29nb110f4d1rq0WkudX2vr6abfj2tpo+mj4c/aX8Lap8OvC3i7VbXXdCstctY5y1x4e1IwWbMqlvOmNsFjjBbAmk2I4+ZSQc1oW/xPn8P+KvHtv4ou7MaPo8lidPbT7Cc3LC4QhYWRXkaeUyLhREiltwUISMnyrxT+xxq/jXwxDo2teMtE1FIPD1totrJc+FjKtjNbl/JurWN7spAxVkEm0b2MalJIgAo63xL8B/F3ifV/GF1e+KvCd9Za8mn+Xpmp+Dnu7eGS1Od0ga9/eBiWI2+WyERlWBUlt6usm6emr9OXp53/q+5z0+e0efyv3v18v622PVfBXjbSfiBoa6voz3T2ZleArfWM9lPHIjFXR4Z0SRGBBBDKDW9XJ/DLwXeeA/C66dqGtTa7evPJcS3DCRYUZzny4I5JJWihUYCxmR9o7muspmqv1PmXxB4A8NeDPihpXh7xCPHOneGtbjkTSvEqfFXxE6Pdxx+a9tcRtdKIGaNZWjYO4cRODtOAby+Avhro3hfT9c8YeKfFfgm01O4MVgNa+LGu25nVmPkf6y+TEjptbyuWXODkg12/7SfgDxF8TPhzFoXhrTtD1G9/tbT7911++ktYVS2u4rk7Wjt5yWbydn3RgOTk42nkfjt8BvEPxK8deH/ElpBbapaJo8+japocni/VdAXZK6Ozx3NipMoO0q0cse1gEOVIwZWyXW9vla/wA7v3dNt3fUt23/AK7flrbdtWVtC5d/DD4S2Hi628KXXj/xNbeKLlPNg0Sb4r64t7KnXcsB1Dew4PIHaui/4Zp8I/8AQX+IH/hx/EP/AMnVzWhfBjxRovxJhuNOs9G0DwpHfwX8kkGs3OoS3AitlgWL7Fc25jgfaqqbiGZWKoMrlmr3qmtVf+v66a9r2s0Zpvqv6/rXbrbe55V/wzT4R/6C/wAQP/Dj+If/AJOo/wCGafCP/QX+IH/hx/EP/wAnV6rRQUeVf8M0+Ef+gv8AED/w4/iH/wCTqP8Ahmnwj/0F/iB/4cfxD/8AJ1eq0UAeVf8ADNPhH/oL/ED/AMOP4h/+TqP+GafCP/QX+IH/AIcfxD/8nV6rRQB5V/wzT4R/6C/xA/8ADj+If/k6j/hmnwj/ANBf4gf+HH8Q/wDydXqtFAHlX/DNPhH/AKC/xA/8OP4h/wDk6j/hmnwj/wBBf4gf+HH8Q/8AydXqtFAHlX/DNPhH/oL/ABA/8OP4h/8Ak6j/AIZp8I/9Bf4gf+HH8Q//ACdXqtFAHlX/AAzT4R/6C/xA/wDDj+If/k6j/hmnwj/0F/iB/wCHH8Q//J1eq0UAfL+v/s+eF4v2kvAunrqvjg28/hLxDcO7ePtdaYNHeaKqhZTe70UiVtyKwViELAlEK+l/8M0+Ef8AoL/ED/w4/iH/AOTqPEf/ACdP8PP+xM8S/wDpdoVeq0AfLHxv8G+F/hKukmPW761jvRM0l141+OHiLQbZAhjAVJfNn3uTJ93C8A8npXPeI7DTNFl1WO103xPqR8N6PDrXiNk+NXiGJIopEZwtgWm/0v5UbDyC3QkqN2dwX6T8cW/i/wDtmwn8OaJ4X1q1kge1uW1y8mtJ7VHZS7RskEwmVgq5iPlZMa5c5+XyXxL+ybbeIPD3g3wb/Z/huLQtE0pNOn8VNYq2uiL5hLa2WY8WcbqceYsrMquyqgID0tbad+vo+l1ps3rd7LUu0bryWv39Py/HbU67R/2ffBWuaTZaja6z8QWtbyBLiIn4jeIclHUMv/L/AOhFXP8Ahmnwj/0F/iB/4cfxD/8AJ1enWVnDp1nBaW0Yit4I1ijjHRVUYA/ACp6p2voZRvyrm3PKv+GafCP/AEF/iB/4cfxD/wDJ1c18SPhH4F+GXgXWfFGoaj8Rbi00yAzvFB8R/EAZ+QAMtfhVBJGWYgAZJIANe9Vn+ILaS90HUreGxs9UmltpESx1ByltcMVIEcrBH2o3RjsbAJ+VuhiV7OxaV2kfH2uXPh3wJp2ux+MbHxfput6fZ2OoQw6X8ZPEN7YvBdXQto3luWniaEI5DSMYmVUO5WkPy16F8KPhRpHjuy1ca3D420W+028+ymTS/ix4i1HT7tTGkgkt7k3MRcDftYGNSrKw56lug/st33hXw1rN7pEXhnTfE+ozWrf2DplmbHw/FZwTGU6csca52SF5DJMULOzZMe0COvQPgX8L734b23iGW607RfDcesXq3cfhrw1NJLp2nERhXMTPHFlpGBdisUS5I+Utudri9+Zf1pbq7vdPW11eyTV5/r+vnrts1rdMj/4Zp8I/9Bf4gf8Ahx/EP/ydR/wzT4R/6C/xA/8ADj+If/k6vVaKQzyr/hmnwj/0F/iB/wCHH8Q//J1H/DNPhH/oL/ED/wAOP4h/+Tq9VooA+ctR+GXhbTvi3oXgqRPiKkerWN9ew6m/xP17aRbfZtwWMXxJBN0BlipyjcEEE57fDGCw+KGjeHNT0bxxb6HrRuUstUtvi74hnuojBGXLXNt9pCxRtgBXSaTl0DBS2B6H4w8I+ONS/aA8E+KNM0zw/N4W0XT76wuZrvWJ4b5vtb2xd0gW0dD5YtRgGUb/ADOSm35shfgtqfin4u6R401/w14R8O6tol4Z08TeHZ5JNV1iHyZIVt7jdbxmGLDoxQyzg7ABt4YN291rXe/3/orW7+ZUrW03t+P/AAfw8jc/4Zp8I/8AQX+IH/hx/EP/AMnUf8M0+Ef+gv8AED/w4/iH/wCTq9VopEny/wDFj9nzwvYePPgxBFqvjhkvfFtxbymbx9rsrKo0LVpMxs96TE26NRvQqxUumdrsp9L/AOGafCP/AEF/iB/4cfxD/wDJ1Hxk/wCSi/An/sc7n/1HtZr1WgDyr/hmnwj/ANBf4gf+HH8Q/wDydXmmifD/AEvxP/wsKy0vSfiB/b/he5htINNvfizr0QvJZbOG5QPKt46xYE4UlfMxtJG7gV9QV438O/CfxF8OeOvitrWo6T4Xht/Ed2moaV9l1y5ncSxWcFrHHOrWcYRWEAdmRnK7toVsbi1a0r9tPvX6XLVmnc8jXwldaNcaxa+I/DviSG6t5bKwsRoXxr8UX0dzf3MgVLeR5fI8rajJK7gPtRgcEkA9j8MvhZofjK68RaTr0Hjzw94i0C6jtr23tfip4hvbSQSRLLHJBObuNnQq+DvjRgysMYwT2msfCbX/APhVukafpuqWU/jSw1K21+e9vUZbbUL5ZhNOrlQWjjkJdFIDGNdmFYIFO78L/COt6RqHifxF4nh0208QeIbuKaaz0m5kure2iigSKONZpIomkPyuxYxp9/AHGTKctbpb/hZarzvddrLZOzee7utrfjr+ln631aMj/hmnwj/0F/iB/wCHH8Q//J1dV4F+GmkfDv7d/ZV54gu/tmzzP7d8R6jq+3Zux5f2yeXy/vHOzbuwuc7Vx1dFMZ5vrnx10jwx8YtF+Hmr6Tq+nXOtQtJpuuSxwnTLmUAt9n8xZS6TEK+1ZEUPsbaWxW9onjqTWfHXiDw03h3VtPGkRQTf2rdNam0uxKDt8oJO0uRtcHzI0+6euRnjvG/g3/hZPj/VvDuveDtUn8JXmiJbnxAlzaxwpcLL5iGLbP8AaY5UJVlkEQ2smQ3ANee3Hw5+Kl34Y8Vaf4gsoPFV1a3elQCdbyK3/wCEr023kd5lZQVEMrxSeW0cm2N5Ebny34z5nyrTr+F2r/LTbdapPUKifNaG2n/pN/TV6eT3aPp2ivGv2dvhxc+BJ/GF3B4ZbwB4a1e9hn0rwb50DLpoWFVmcR27vBCZZMsY4XZeA3DOwr2WtXoJXe4UUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlXiP/k6f4ef9iZ4l/8AS7Qq9VryrxH/AMnT/Dz/ALEzxL/6XaFXqtAHFfE34ly/DbTft6eEPEXiq2ijee7bQIbdzaQqMtIwmmjL9/ki8yQ44Suf8V/tFaB4cthe2Wk614o0qHS4dc1DUNDgikj06wlDtFcSrJKkjhljkbZCkkmFJ2Yxl3xt1rxUsVpoOieBvEXiXRtSikXVdQ0C706GaGLoYEF1dwENICcyLnYv3fmIKcT4o0TxvFL4uh0T4eXMmm+NPD1tp1tEt7YwHQZ1hmhZLxfP2+UqyRkG2Mx+VhtxtJl8yjzJXd9Ft338nprpbW71RdlzRTdl19NNvPfTXppoz6CsryHUbOC7tpBLbzxrLHIOjKwyD+INT1Q0DSV0DQdN0xJGmSyto7ZZH6sEUKCfc4q/Vu13bYyg5OKctwrk/FfxK0zwf4k8NaLe21/Jc6/fLp9rNDbkwJK0M0oDyEgfdt5eF3EfLkAMCesrxn4+23ie88VfC2bQPBOr+KbXRvEX9r39xp1zYRLBCLO6t9uLm5iZnLXKNhQRtVuc4BcEpSSk9zRWtJvs/vtp+JqeKPjdqHhfXprJvhf4yv8ATUv4dOTW7ZtLS2mkkZFDRpLepO6gvgkRfwsQCBmum8E/EnTPHmqeJLCwtr+2n0G6itLoX9uYCzSW8VwhVSdwHlzJwwUg5BHFVl0vWdc+KD3uo2n2Tw7oduBpZ81WN7dzKRNOVUkqIo/3SBgCTNMcYCGuO+Ddt4ntviz8WbzWfBOr+HtK1vVLe+07Ub65sJIrhIrK2tSNsFzJIrM0LuNyAbCMkN8oVNJpqT1tp96/4LQWVm3/AF/XX0PZqKKKRIUUUUAef+KfjBD4Q8VaZpV94X8QnS7+/g0tfEUUEJsY7qZgsUbKZRPhmZV8xYmjBbBcYOM7Q/2gdH13XrC1j0LXrfQtTvX03TPE88EP9n39yofMce2UzqD5UgEkkSRtt+VjuXPL/FPwX4h+JfjvSls/D/iXw7qeh6jbXdh4rTxCo0XyUmVpd1ilzmWZomlTEtrj5seaBg1maP8As+nUfjHb6zb6Dd+DPCOiavNq62dxrEl3/a1+RIqzQWnnSW9lBmV5DsCSyMV3KmCGmDbtdf8ADafO+9vOy11YTWjce346+um1/nqtLfRlFFFUB5V8ZP8AkovwJ/7HO5/9R7Wa9Vryr4yf8lF+BP8A2Odz/wCo9rNeq0AMmlEETyMGKopYhFLMcegHJPsK868OfG231nxBrGhaj4T8S+GdZsLL+0obLU7aGR9Qtd+zzbc200wbDbQUYrIu9dyDNehXk721pPNHbyXckaM628JUPKQMhVLFVyeg3EDnkjrXi3gbxN40vdW1vxBrnwk8Taf4ils9kC3uoaR9ljgR8rZwPDeyvvbezGR0RXZRuKKqBSz17Wf5Pbzvb5XW7RTXu3W+n5/la/zt0uXk/aUshqF7olx4J8V2fjGCeKCHwvLHZG7vPNjllR4pVumtdmyCZiWnXb5ZBwSAe7+HnxA074leHf7W06G8s/LuJrK5stQh8q4tbiJzHLDIuSNyspGVLKeCrEEE/OOkfCzxv4U+KFl8TfD/AIV8TnRBJ/p3gfX/ABFDqGsTTNFPE91DPNeSwJhTbqIvtIUorcIVVW93+DPhnUvD3hnUbjWLRtO1PWtXvdYm09pVlNoJpmZIiyEqWCbN20ldxbBI5KTb3X/D6fffV316bN2UNW2fX8LP8U7L73qtTvaKKKYz5g8dfGPx58OddGj638RNB+2NNHbKdN+DPiPUIXmkXekKzW+oSRtIV52Bi2O1dt4ZPxh8XaHa6vp3xD8EfY7kEoLz4canaTKQxVleGbV1kjYEEFXUEEcipP2kNWOmyfDcrpet6mIfFdpeTf2Not5qPkwxrIHeT7PE+wDevLYzzjODjj/j+PEF34s8Q2ci/EGFzpET+DbnwU94tv8A2l+93i5Nv+6BDiD/AI/v9HKk+j1kpy5W2r+81p1Vk9F1etvUqS99Rjs0nr3ba1fRaX+Z20Nh8YrjUbmwi+J3w4lvrVI5J7VPBF4ZYlfdsZ1GtZUNsfBPXacdDWb4k1H4s+ErvRrfVPiR4HhfV7xdPtGi+G+qTRmdgSqu8erssQOCA0hVScDOSBXmGtaHrvgHx1468Q32k+MNb8T6roehwTTabPrb6aNzNDfTRJZuwLQl/MWCICUDcY9u92DPDWveJfDHg220rxNY+Ndfl0v4h2jWc48N6vdSf2bsikEu6RrmVo0LS5eSZyCCp2nEY03nyR7r/wBKjF2++6ezs+zOd1GqbnbWzsuukXJX+6z16ruj27/hHPjf/wBFD+H/AP4Qd9/8uaP+Ec+N/wD0UP4f/wDhB33/AMua4X4SSa9d/Gy/uLhvGOqIZL8Xt1qsWq6VYWsZl/0eNbW532dwwHyrLZsnyrudSW4+j6ItSin/AF/wfU26tHlX/COfG/8A6KH8P/8Awg77/wCXNH/COfG//oofw/8A/CDvv/lzXqtFMDyr/hHPjf8A9FD+H/8A4Qd9/wDLmj/hHPjf/wBFD+H/AP4Qd9/8ua9VooA8q/4Rz43/APRQ/h//AOEHff8Ay5o/4Rz43/8ARQ/h/wD+EHff/LmvVaKAPKv+Ec+N/wD0UP4f/wDhB33/AMuaP+Ec+N//AEUP4f8A/hB33/y5r1WigDyr/hHPjf8A9FD+H/8A4Qd9/wDLmj/hHPjf/wBFD+H/AP4Qd9/8ua9VooA8q/4Rz43/APRQ/h//AOEHff8Ay5o/4Rz43/8ARQ/h/wD+EHff/LmvVaKAPl/X9A+MI/aS8CxyeOvA7ak3hLxC0Fwvgu8EKRC80XzEaP8AtYlmZjEVYOoUI4KvvBT0v/hHPjf/ANFD+H//AIQd9/8ALmjxH/ydP8PP+xM8S/8ApdoVeq0AfO3jnx18Tvh5qVlYar4+8OXV7dxPPFBofwh17VmEakKWcWmpS+WMsAN+M9s4NYU3x28VwWOnXj/FvwZ9mvbNdQ8wfCrXCLO2JIE95jU/9DjO1vnuPLHysc8Gvb/iZc6pfrpPhfS7S8zr07QXupwRsIrCzRd07NIBhZHX91GM53SbhkRtXkHx4+GeoX/iG/0r4dv4m0vXvE2kppl/DZQRxeHUtQrwpcXUskBIeJCwWK1lSVgsYYBDuE3eyV3/AMP5O3TXW2rsUld76f1/wdNOi6nfRaD8bJ4kkj+I3w9kjcBldPAl6QwPQg/2zyKf/wAI58b/APoofw//APCDvv8A5c16NoGkroGg6bpiSNMllbR2yyP1YIoUE+5xV+rdr6GcW3FOSszyr/hHPjf/ANFD+H//AIQd9/8ALmuI8ZfEP4hfD/WrHTNf+KXgmxlu5IoVuh8MdYlsoHkYJGs90mqtDblmICiV0zkYr6MrxL44fEHSrnVV8B6vonimbRLhIrjVb3TfCGq6nBcRbwwtY5LW2kTc+3EjFhtQ4HzNlBJykkv6/r5+holdMXVLj4taNqNvYXXxN+H63k6mRYY/h/qEjJGDgyvt1g+XGDwZHwoPBNc54L+JXj34g6v/AGbonxW8DTXbxPcW/wBq+Ger2kd9CpAaa1km1VEuYwWXMkJdRuXn5hnlvFWl+NB8RPHUNhJ4nGq+IdatGttOPh7z9F1XRvs9vFJFdXjQsLYIv2v5BNBIHZm2OXGeh+Cnw5165+I+jayupeLZfAXhWwubHRv+E1ijt765eYRptjhWGGRIIkiwGulaZ2bqFUFpjf7S3S/K7vvqtFbq007aXmXePfX9Leur9LedvQv+Ec+N/wD0UP4f/wDhB33/AMuaP+Ec+N//AEUP4f8A/hB33/y5r1WimB5V/wAI58b/APoofw//APCDvv8A5c0f8I58b/8Aoofw/wD/AAg77/5c16rRQB85at8QPido3i4+G5fHOh3OpCWOF5NP+DXiG8tI3cKyh7qHUWgXh1JLONoOWxS6N8Q/iFr3jiTwjbfFLwTHrojkmhhvPhjrFrDdpGQJGtp5dVWK5ClhuMLvjPNTePdKbXPiFcr4Xb4haP49j1a0uVkzqEOgm2VoEmZiP+JfNG0CMdjFp8sQAjABdbRPiLpHxE+Mdg17oniuwbRJLq10dL/wdq1vC8zLslu5LuS2WBFKK6RjzMFZGJyzKqVGLklbz/penX9LNlSVrtbK3/B/4Bt/8I58b/8Aoofw/wD/AAg77/5c0f8ACOfG/wD6KH8P/wDwg77/AOXNeq0VJJ8v/FjQPjCnjz4MLd+OvA89w/i24WzeHwXeRrDL/YWrEvIp1ZjIvliRdoKHcyNuIUo/pf8Awjnxv/6KH8P/APwg77/5c0fGT/kovwJ/7HO5/wDUe1mvVaAPKv8AhHPjf/0UP4f/APhB33/y5rnLrxF8SrHW9a0i4+Lfw2hv9F09NU1GOTwJfgWlq2/bJI39s7VH7pzjOcDOMEE+6XBlWCQwIkkwUmNJGKqzY4BIBIGe+D9DXwvcL8S/EHxF+Jujal8PPMv7vwdDZyXlidTltNSvILq5neOO6uNMtrdzIJ9oHmbAuxVaT5gjjyvmTdmk2vP+v63G1aDl6fi0j0mD43eMLiyvJl+K3hBbi1kiifS5PhPrqalIZA5iMVk2pi4lVxFKVaONlYRuQSFOOz8Haj8VfiBoEGteH/il8PNS02ZnQSp4B1BGR0Yq8bo2sBkdWBVkYBlIIIBFec+JNYvNe/aP8J/F+08J+LW8GaFpraPfrN4bvI75ZpluSJksmh+0ypEWWMtEjD/SCV3KrFfbvgRpN3Y+FtY1C6s7nThrmvahq8FneQGGeKGadjH5kZAZGZQHKsNw34OCCAk294/8DWy9eZe8trLTXcUtHo76r7rXb/7dfuvz102KX/COfG//AKKH8P8A/wAIO+/+XNdV4F03xxp/27/hMvEPh/Xt+z7J/YWgz6Z5WN2/zPNvbnzM5TGNm3a2d24berooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8q8R/8AJ0/w8/7EzxL/AOl2hV6rRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlXxk/5KL8Cf8Asc7n/wBR7Wa9VoooAKKKKACiiigAooooA//Z)
Suppose that one of the 400 accidents is chosen at random. What is the probability that the accident involved more than a single vehicle?
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9NfG0Hie50MxeEL7SNN1lpYwLrW7OW7t449w8w+THLEzttzgeYoz1PY+B6/8AHHx14G0O1m8S+KPA1hp2ra1Jptl43u9HuLLSbOOKM7nnha+csZJUeOMm4iUhd2eVDe/eN9D1HxL4U1LStJ1mTw9fXkXkpqcMXmS26kgO0YyMPt3BWz8rENg4wc7xJ4P1RvB1j4e8G61D4Nht1jtRcpYC6kgtFQpsgDOFSQAJtd1kUAHKNkETrr/X/Dbfix2T6/1+v/DGZ8EfiPc/Ezwhd316LNryw1O60ua509XW2ujBIUE0SvllVxhtpLbckbmxuPoFc78P/AOjfDLwpZ+HtCgeGxty7l5pDJNPK7F5ZpXPLyO7MzMeSWNdFVv1v+H4dPQhf16dF8kfOPxc+EPwI+FOg2d+/wAC/Amqz3WoWdkltF4asE2LPdQ25lZjCcKhnTsckqOM5HI+OPCPwc8GXet6p/wzn8PLzwH4e1GHS9Z1v+yLKO6glfyd0kNqbQrLDH56B2MqN8r7Ufbz2P7UvwI+IHxQWK48B+KpLC4mlsftNhf31paWcaWt0lyjox0q7mZy69PMVAQhKuAULfFnwG8b+MdF8WeB9Qn0K58EeL76LUNS1CS6k/tG0G2D7RbRwi3EU4doTiUvFtEh/dHaAU37nuL3lzb7P4eVenxNvTor9DW0bxTejevp1t53t8tTH+F/g/4byePPCT3H7O/gbwi2tWra74Z1rTdOs5bmLyfKkX7Qoto2tbgCRHURtKAVPzggZ+pa8X+Gnw18a2mueEZvGh0E2/g7SpdM0650e5mll1F3WGM3M0ckKC3PlxH90ryjMh+fCgH2iqlvpt07td35/JdNE7mUeblXNv17X8vIKKKKkoKKKKAP/9k=)
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7o/aO+L2s/B7T7TVbTxH4J0iN3SO10bxK7Jda5KXVWgt5fPiWFgGX5ikw+bLBAMnZ8a+JvH/hPx54blhPh/UvCerarHpTaPHaTrqcYdHY3K3PnGNwgRneLyRiNHPmHFXPiP8ADrxL8Qf7T0VvFGnWvgjWLN7LUtLm0Tz73Y6FH+z3PnqkeQc/vIJcHOMcYyYfhf49074gR6xY+L/C40C2WO0sNLvfC9zPc2NkoUPDFcDUVXe+3mUxEk7cgqoWlBNtKTsr/rqn5enRvRNK7drO29vx6W9P0S1Tdtn4Y+Pta8WeLPiDo2tWlhayeG9TtrKIWDO4ZZbG3uTudsbiGnK5CrkKOBXodeY/DP4ZeKfBfxA8eeINY8T6RrNj4ovI74WNjoctnLayRwQ28Y81ruUOvlQLkbFJclgVGEHp1XLl05ey++2v4jk1zOx84/Fz4Q/Aj4U6DZ37/AvwJqs91qFnZJbReGrBNiz3UNuZWYwnCoZ07HJKjjORyPjjwj8HPBl3reqf8M5/Dy88B+HtRh0vWdb/ALIso7qCV/J3SQ2ptCssMfnoHYyo3yvtR9vPY/tS/Aj4gfFBYrjwH4qksLiaWx+02F/fWlpZxpa3SXKOjHSruZnLr08xUBCEq4BQt8WfAbxv4x0XxZ4H1CfQrnwR4vvotQ1LUJLqT+0bQbYPtFtHCLcRTh2hOJS8W0SH90doBlv3PcXvLm32fw8q9PibenRX6DtG8U3o3r6dbed7fLUx/hf4P+G8njzwk9x+zv4G8ItrVq2u+Gda03TrOW5i8nypF+0KLaNrW4AkR1EbSgFT84IGfqWvF/hp8NfGtprnhGbxodBNv4O0qXTNOudHuZpZdRd1hjNzNHJCgtz5cR/dK8ozIfnwoB9oqpb6bdO7Xd+fyXTRO5lHm5Vzb9e1/LyCiiipKCiiigD/2Q==)
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9SNVe+jsZDp0dvLd5UILqRkjAyNxJUEnAyQOMkAZXOR5HoHxa1vxR+zj4Y+IE+teFfBFxqWmQahf6tr8bvptgHUH/AFZniLAsQo3TJjOct90+sa9BqVzo15Fo13aWGqPEVtrm+tWuoIn7M8SyRs4/2Q6k+oryr4ffCX4hfDX4ReGPCGkePdAfUNCjWzjv7rwtK9tcWqoFRZIBfB/NGCd6zKpz9yiycZLrpb8b/o35FppLXudP8CvH938UfhRoHii+bTJLnUElJm0abzbSdUmdFliJJIV1QPtJJXdtJJU13tct8Ofh/Y/DjQJ9Os5Gnku7251O7nKBBLczytLKyovCLuYgKOgAyWOWPU0Xb1f9fl+S9DNK2h84/Fz4Q/Aj4U6DZ37/AAL8CarPdahZ2SW0XhqwTYs91DbmVmMJwqGdOxySo4zkcj448I/BzwZd63qn/DOfw8vPAfh7UYdL1nW/7Iso7qCV/J3SQ2ptCssMfnoHYyo3yvtR9vPY/tS/Aj4gfFBYrjwH4qksLiaWx+02F/fWlpZxpa3SXKOjHSruZnLr08xUBCEq4BQt8WfAbxv4x0XxZ4H1CfQrnwR4vvotQ1LUJLqT+0bQbYPtFtHCLcRTh2hOJS8W0SH90doBG/c9xe8ubfZ/Dyr0+Jt6dFfoaWjeKb0b19OtvO9vlqY/wv8AB/w3k8eeEnuP2d/A3hFtatW13wzrWm6dZy3MXk+VIv2hRbRta3AEiOojaUAqfnBAz9S14v8ADT4a+NbTXPCM3jQ6CbfwdpUumadc6PczSy6i7rDGbmaOSFBbny4j+6V5RmQ/PhQD7RVS3026d2u78/kumidzKPNyrm369r+XkFFFFSUFFFFAH//Z)
◦
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAmABoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9SNVe+jsZDp0dvLd5UILqRkjAyNxJUEnAyQOMkAZXOR5HoHxa1vxR+zj4Y+IE+teFfBFxqWmQahf6tr8bvptgHUH/AFZniLAsQo3TJjOct90+sa9BqVzo15Fo13aWGqPEVtrm+tWuoIn7M8SyRs4/2Q6k+oryr4ffCX4hfDX4ReGPCGkePdAfUNCjWzjv7rwtK9tcWqoFRZIBfB/NGCd6zKpz9yiycZLrpb8b/o35FppLXudP8CvH938UfhRoHii+bTJLnUElJm0abzbSdUmdFliJJIV1QPtJJXdtJJU13tct8Ofh/Y/DjQJ9Os5Gnku7251O7nKBBLczytLKyovCLuYgKOgAyWOWPU0Xb1f9fl+S9DNK2h85eOvgv8FfBXinwbpJ+APgS7tvEeqrpQv/APhH9ORIZDb3M/C+UWYgWxBBCj94uGPIHIeOPCPwc8GXet6p/wAM5/Dy88B+HtRh0vWdb/siyjuoJX8ndJDam0Kywx+egdjKjfK+1H28+xfG7wj448U+JPh3d+FNM8P3tn4d1v8Atm7bWdYnspHxbXFuI41jtJgeLkvuLLygXB3bl5Xx/wDAnxd40tvG3gqSbQ5/h74w1NNRvL+W4lTUbOM+T51slv5LRzBzCcStKm0SEFG2jKldRvBXdnv3VrJ+Vru+m2/R6vk5orppzenvXt5/D36nPfC/wf8ADeTx54Se4/Z38DeEW1q1bXfDOtabp1nLcxeT5Ui/aFFtG1rcASI6iNpQCp+cEDP1LXi/w0+GvjW01zwjN40Ogm38HaVLpmnXOj3M0suou6wxm5mjkhQW58uI/uleUZkPz4UA+0Vct9Nundru/P5Lponcxjzcq5t+va/l5BRRRUlBRRRQB//Z)
Question 2
A fast-food restaurant chain with 700 outlets in the United States has recorded the geographic location of its restaurants in the accompanying table of percentages. One restaurant is to be chosen at random from the 700 to test market a new chicken sandwich.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCABEAaYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7+/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxqj/hk74If9Eb+H//AIS9j/8AGq9VooA8q/4ZO+CH/RG/h/8A+EvY/wDxquE+Nv7M/wAPvD3w41PUfA/wh+EsXiO3MZt01/wbbz2kpZwux/K8t0yWHzgtt5+RulfSFcl8UfC+ueMvCE+leH9Y0/Qr+WWJ/tmpaa9/EFRw5XykngOSVHO/jng9pd7aFRtfU+arb4Y/C/xr4J0O+8P/AAf+FfhvxNba3aaN4n0TW/A9reyWE7sizQKI3h2n51dJSXV0KsFIYEcx8Jvhv4E8ZfFfWvC2p+Gf2eLi70bW7yxuPC+n+AIodXksoQALnJupfKyzr96EqR0YFhj6X8X/AAMh8S/EHw340tNWOi65ZvbprJtrUNDrNtC5ljikQtlGSXDJICzKrSIdwfjJ8EfB7x94P8Vahcnx14dutAvvEF1rktonhSRL9VmbJgS6a+dFGAqlvJyRnG0kEKPOp3ltr6fYt8vi7223szKV1F8uu33Wldet+Xrro+6NP/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//Gq9Voqyzyr/AIZO+CH/AERv4f8A/hL2P/xquX+KP7Pfwd8B/DrxH4i034C+Bdev9MsZbqDTYPCtoz3DqpIUBIGY/wDAVJxnAJ4r32s7xDZ6hqGiXlvpOpLpGpSRkW989uLhYX7MYyQHHqMjI6EHmplezsNbnwn4i8MfDjT/AIP+LfEuhaL+zZ4p1LRBa3Estp4HhSKyjkkCPFdW/wBqZ48BlcTNInAYGL+KvZPgn+z38I/Gvhy71S88GfBPx3p73JjsdZ8H+C7a2tZFUAOpDyXAYq4YbkkIPTAINbvjj9nbxV8RdG1a41rxroi+Mru0h02DVbHw1JFZ29ol3FcuhtmvWkkZ2iUbmnwv8KjLZ9N+H2geLdEXUpPFniDRtcuLmVXiXQtDfS4IgBhiyvc3Du7HGWL4wqgKOSWm769vxv8Ala3bW++7l30X9bf537/LpzP/AAyd8EP+iN/D/wD8Jex/+NUf8MnfBD/ojfw//wDCXsf/AI1XqtFMZ5V/wyd8EP8Aojfw/wD/AAl7H/41Xi3x2+GHwj+Hvifw/o8Hw2+D3gfTb+1uLufxZ4t8E291p0TxtGq23yNbokjiRn3STKAsZwrc7fr6uP8AG2ieN9RvrObwn4q0nQoFQx3Vtq+hPqKyZIIeMpcwGNwMj5i68/dqXdNNf1o/Trr+elx9P6/r+u58w2fwy+Gtl8W/D1jrPw4+CTeBtW8LXOvRXeleCYbgzSW3li4Ed5v8sxgTJKv7kkruXqA7UvDvw98FeO/B1tHZfA/4T+FPHkPi4+H9Q0fU/BNvfrFDuMwbCNCVf7ERNuyykqQAN2V931D9mfR7jRfh7pdrqVxZ2vhXUpr6bagB1GOZZTcQNsKiNJJZFchQVATaFAwV6K2+D1pafG29+IcWoSp9s0yOzm0gRjymuULKt5uznzPJbysYxtAzkgY0TSktNFf8+ZN6bfZt83ZEtXi++n5ctl/6V+TvoZn/AAyd8EP+iN/D/wD8Jex/+NUf8MnfBD/ojfw//wDCXsf/AI1XqtFSM8q/4ZO+CH/RG/h//wCEvY//ABquE+Nv7M/w+8PfDjU9R8D/AAh+EsXiO3MZt01/wbbz2kpZwux/K8t0yWHzgtt5+RulfSFcl8UfC+ueMvCE+leH9Y0/Qr+WWJ/tmpaa9/EFRw5XykngOSVHO/jng9pd7aFRtfU+arb4Y/C/xr4J0O+8P/B/4V+G/E1trdpo3ifRNb8D2t7JYTuyLNAojeHafnV0lJdXQqwUhgRzEfgPwpo3hT4tJd/BH4R+J/HHhnV20vRdD0vwJDYi6zbLdRu5kklMm6By5C7MeU4G7INfS/i/4GQ+JfiD4b8aWmrHRdcs3t01k21qGh1m2hcyxxSIWyjJLhkkBZlVpEO4Pxo2fwgtbT416p8Qv7Qlc3um29mNL2kRRzxmRWuc7sMzROkeNvAQ8ndhUuaz11d/RaR1+9Oy6X1b3cLSV3qtH2fVNP7033srWei8X8JfBX4UfEHxv4butA+Ffwon8C3/AIbj1u5jPgi2e7V5ji2CXIYIFbExKmEkeQRn5/l9U/4ZO+CH/RG/h/8A+EvY/wDxqtP4OfB61+Dun65ZWmoy6hb3+pz3lqksYQWNs7lorNME5jjLPtJ5+bHQAD0KtW07WVvx3138tvkJJq6bv/wNL/Pf5nP+Cvh74V+GulS6Z4Q8M6P4V02WY3MlnolhFZwvKVVTIUjVQWKog3YzhQOworoKKko8q/4Zp8I/9Bf4gf8Ahx/EP/ydR/wzT4R/6C/xA/8ADj+If/k6vVaKAPKv+GafCP8A0F/iB/4cfxD/APJ1H/DNPhH/AKC/xA/8OP4h/wDk6vVaKAPKv+GafCP/AEF/iB/4cfxD/wDJ1H/DNPhH/oL/ABA/8OP4h/8Ak6vVaKAPKv8Ahmnwj/0F/iB/4cfxD/8AJ1H/AAzT4R/6C/xA/wDDj+If/k6vVaKAPKv+GafCP/QX+IH/AIcfxD/8nUf8M0+Ef+gv8QP/AA4/iH/5Or1WigDyr/hmnwj/ANBf4gf+HH8Q/wDydR/wzT4R/wCgv8QP/Dj+If8A5Or1WigDyr/hmnwj/wBBf4gf+HH8Q/8AydR/wzT4R/6C/wAQP/Dj+If/AJOr1WigDyr/AIZp8I/9Bf4gf+HH8Q//ACdR/wAM0+Ef+gv8QP8Aw4/iH/5Or1WigDyr/hmnwj/0F/iB/wCHH8Q//J1H/DNPhH/oL/ED/wAOP4h/+Tq9VooA8q/4Zp8I/wDQX+IH/hx/EP8A8nUf8M0+Ef8AoL/ED/w4/iH/AOTq9VooA8q/4Zp8I/8AQX+IH/hx/EP/AMnVgz/B74ff2nd6XZa38Q9W1a2jZ5bKw+IniKQxsF3COR/t4jhdh90Ssm7txmvYvEWhW/ibRLvS7qW6ht7pNjyWVzJbyqM5+WRCGHTseRkHIJFcz4Q8M6/4EtYNEs/7H1Lw9bxMtqwhGnTwYGVRo4IzDJucnLIkIUdEc1LbQdUeE6f4f8Kaj4Av9dS2+IQ1SPxHceGLTSv+FpeISLi6jvWtFLSi7+RCyl2ba21QxwxGC7SvDXhm08M+OrvxXZ/ELRdZ8HEC/sNO+KXiG+hud0KzRG1mN3Ezhw4Ub44yGyCMYJ3vCvwg+JcHw81aw1GHwtpPiGHxfL4t0v7FqtxfWs5lvpLt7adntIWiGHMXmIrnnftGNhuT/Dfxp4rg+IOl6rZaZomteL7RbqbVNPuZbuz0x4o44bOBDJDEbokxyyOcR7QQNvzKTU7rmUf6XKndebd1rdeSbV3O3O+T4dbb92tfK3L26nAT6NYeH9S1HQPEugeOrDxWEspNLs9N+L3iK7s74XVwbeNWuGnjaJkdSZMxMFXlTJ0ottEsp7u58MNoPjaL4ixamNNGlH4weIzpkgNobr7QL0TeYIfLG3Jtw+8hdmDur0DXPhJ8Q/G+pTeL9VHhnRfGVh/Zy6VY2N7PeWMi2ty88gmme3idPO37PljbywoOZDxSv8JviCviJfiFDF4aTxw2rfa5tBbUJzp0lp9i+yC3+2/ZvMDg5l8z7PjJ2bMfNWd58rule/n8OlmvN63Wy10WhLT5/dell9/2l6dvzZD8LfhR4V+Ivhue+uj8RND1KyvrnTL7T5PiZ4gmEVxBIY32SC+G9CRuVsKSpGVU5A7D/hmnwj/0F/iB/wCHH8Q//J1dF8KPBl74M8N3Saq1q2tapqN1q1/9iZmgSaeVn2RsyqzKilE3EAttzhc4HZ1prpzJJ9bbX628r7D6u213b0vpfztv5nlX/DNPhH/oL/ED/wAOP4h/+Tq5f4l/Bnwt4D8F3+twan4ulmt2iVRrHxX8RWFmC8qR7prgXUnloN2S2xunSvfa57x1b65PoOfD1ho2q6lDPFOljrsrw282xwwHnIkhiZWCur+XJgoPl53KnsVG19T5D1bUPD2i/DTTvFUt99ui1LUnsLTUNM/aB8Rz6GAkTufO1H5dkjNGY0jETbnZRuGePXfAPwj8J+PdNt7+KX4iWFs9nbzSrc/ErxCJYbiSJZGt2T7bw0auoYnHzHGODjvvAPgXVfDS+L9euINKsvFPia4S/nsrKR5LK3mS2jgRfNMaPN/qwWlMaMQQNo2iuNsvg7430f4taPqll4gJ8M2rrLPK+s3aPIphcXELaaqfZZWmuHac3LN5iFiqrgCqlurLt+Wv3bv8L7OUvdbvt+P/AAen523N/wD4Zp8I/wDQX+IH/hx/EP8A8nUf8M0+Ef8AoL/ED/w4/iH/AOTq9VopAeVf8M0+Ef8AoL/ED/w4/iH/AOTq57xp8HvAfgmyspLrVfiJcXmo3aafp9jB8RvEHm3dy4ZljTN+APlR2JJAVUZicA17tXlfx3+Fl78Rk8L3un6douvXGhX0ty2h+IpZIbHUYpbaWB4pJEjl24Eu7mKQHaVK4bIT/r+tfyGeJfGbTtB+Dj+HrW7tvFdzqOpQzTvbzfGPxHbrN5bxr9msSZibu7YSblg2x5Ct8wxXq2gfAbwj4gW7uIdS8fCwjnaG3uB8TPELfaNh2uwAvuFDhlHJztzwCM6/wu+FGp/Dn4UXHhiyubPSbi5urieG305na00eKeUs0FpuAJWJWbZlVBbHyqvyjJ+H3wp8Z+E/izeanPq6J4QSK4ht7WPWru4WaElPssAsJEFvZi3RSvmQszS9Xxk0a6K3e/4fLT111t0uaNOSfXb9f+BuvvNX/hmnwj/0F/iB/wCHH8Q//J1H/DNPhH/oL/ED/wAOP4h/+Tq9VopiPKv+GafCP/QX+IH/AIcfxD/8nVheMP2erHTtLDeGU8aa3qjthYtR+LHiKxtUGMkySrcyuOmBtifkjOBkj3KuI+LWiaz4k8NnTNO8L+FvGdhdHy7/AETxbcvb2s8fBB3Lb3AOGAO1oiDxyuOZle2g1vqfKfibxH4b8O+FPB+qyaR43tr3XIbqZ9P1T4w+IbZpDBOsLQWDLcP9tuJMmSKMCPzIxu3L0r3jQPgN4R8QLd3EOpePhYRztDb3A+JniFvtGw7XYAX3Chwyjk5254BGd/4dfCW5+Gnwrm8KaNew2Ek1zczxLaqVttLjuJ2cw2qHO1IkciMHALKDhQdowfh98KfGfhP4s3mpz6uieEEiuIbe1j1q7uFmhJT7LALCRBb2Yt0Ur5kLM0vV8ZNU23bTv+n5fj62uktG7+X/AAfn26Gr/wAM0+Ef+gv8QP8Aw4/iH/5Oo/4Zp8I/9Bf4gf8Ahx/EP/ydXqtFAHlX/DNPhH/oL/ED/wAOP4h/+TqP+GafCP8A0F/iB/4cfxD/APJ1eq0UAfIkekaINZ0u5m0b4hP4K1jVLjRtO1i0+K/iGS9e4i84bpLM3KhIpDbuEZZXY5QlFDZFL4N/8Ir8WortYk8Wx3fm2qWiaX8YvEN9EwlR3kinkNxH5NzAsbedCA+wsi7mLCvVPDHwi8Z2mpeHtB1mTQrjwb4c1y41yy1K3uZf7Qu9zTtBBJbGERx+W1wMyLK+/wAofIm442/jD8N/FHjOOa70W9j+0xyxQw2K6xdaOZrPBaaM31sjT27PL5TFo1OVto16M1RFy5PeSvpb00vfz3Wy0Se4+W8lr019ddF5Wtbzvdkn/DNPhH/oL/ED/wAOP4h/+TqP+GafCP8A0F/iB/4cfxD/APJ1dl8OtF1nw54E0LTPEOp/2zrdpZxxXd8Cx82QDk7m+ZsdNzfM2MnkmujqyUc/4K8D6d4A0qXT9MudYureWY3DPret3uqzBiqqQJbuWV1XCj5AwUHJAyxJK6CigZ5b43+ON54R8fp4Rsvhr4u8V30unvqkVzo0mlrBJCjxpJg3F7C+5WljG0qCd3y7gCR1nw0+Iek/FbwLpHivRBcrpupxGRI7yEwzxMrFHjkQ9GR1ZTgkZU4JGCfMfiH4P1Xxv8etMtr3wh4mfwa3h+50258RaRrkWnKk0lxbToA0F5FdhMQMrbU5LKMMpYjjfi78A3vL/UtFsPhfa+K9Bk0KDTvCdzbXdvbL4Vu0EoMw82RHgBZoXE9qrzZQgjhcy24wi7Xbv+Dl+aStf1vqCu5tbLT8l69b7fcfU1FfGt98FtP13xx8QvCUngGLxdrN1p2lvJ4qaW1ig0/V/scinUJQ0izRzkrG/nW8TyHPO0c1a+I/wJ8TW2g/FzwzpXw9XxavieKx1Oy1cS2EEMt9BbxRySSrLKrrdPJGZFfaVJbLSqeajn961tL2uvnfz6dbXuvO0ptxTtr2/L7/ACvbVvpf6b8O+OIfEPinxNoP9mX2n3WhSQLJLd+SY7pJULpJEUkY7eGBDhGyp+XGCdHVPE2m6Nq2j6ZeXPk32sTSQWMXls3nOkTyuMgELhI3OWIHGOpAr5n+I3h/x/448b+I7FvhRfzeDdfk01b6fUBod67RR28wcRwXF08QZJnh3NJG42rLsVjs3ZWi/s+XsnhP4Qr4z+FY8Z3Xg/VNVtbi11AaTdTCzkM/2WZN7pCYhugIjXyypVSIl2BaqLdnzLb8fP8AK69XsTzO9l/Wu33dfv1PrPRtXg17TYr62juooZCwVb20ltZRtYqcxyqrryDjIGRgjIINXq+PtC+FevXHgvwdYeK/gfL4g8K6Zbajpz+Brm60qT7JK9yJLW7SI3X2UoIS0f3/ADIj9xSCSWeDf2aLubWJtC8dfDmPxPaTeCodMuvEOoTWd5b3V9HLJJEjGSX7RK8MbxxRzyRbh5Zwyg5aXOSSbj3+Wjf42W3dXd9DSPvavTb8Wl+F236XtZ3PsSuf8aeM7PwTpkFzcQT311dzraWOnWhjE97cMGZYYzI6IGIVjl3VQASSK8jk8IeNNZ/Zb8F6Ld+H7mTxHp9ppcWt+HNRv4RLqMVuY1u7czxyvExmVHK7pNrblWQqGYDyXWf2fb6STT2h+Cck/gi58XWmrR+Ai+kSw6RbR2bxXDmCS5FvGZpnV/KgeRf3W84diDpK6m4rpJL5XV39zfXpd6akxbceZr7LfzSbS73vZdL30dz6s8dfEjSPh3o9le6utybi/uI7Ox0y0i8+7u7l/uwxRqTubgknO1VVmZgqlhmaN8U7q5j1B9c8BeLfCi2kfmr9ttIL83C7lX92NPmuSTlh8hw2ATjAJGD8cPAXiPUr3wL4r8FW9tea14M1GS7j0Oe4FtFqFtLbvbzQLIVZY5NkmULDGVwSoYkc58YL3xX8VvhD4gsR8GNaN/GYJLHS9ZvdHNxLcrKjpLGUu5IkVNpYu0iuDjajZJE3d5P8PLT9X3+7ccrpadvx10/pffse1WfibTdQ8Q6nocFz5mqabDBPdQeWw8tJvM8o7iNpz5UnAJI284yM6lfK/jT9lbw58W/HfxJm8QfDGysx4x0KyNt4luLXTpZtPvI1k3pJh2k80P5JLJvjcRgFsKM+sfBHwEulacfF+s+GNM8PeOddsrSLVFsYI1MccESxxQb1VSyqAWGRkb9vARQKvra39bfn+GoK7V/+B2t+H4roelXl2lhZz3MiyvHCjSMsMTSuQBkhUUFmPoACT0ArgbX446Fd+B9Q8TR2epeTaavNoS2DQoLq4vY7o2ghjXftJaYbVLMowcsVAJHoFxI0MEkiRPO6KWEUZAZyB90biBk9OSB7ivmLwf4W+IL/AA11bf4A1HR9bsPHdx4qtdL1a/sC2o2supS3Jiikt7mVElEUmP3hRd+BuK5YPRp38vubSb2eqV3bX0LdvZtr4un3N/LWyv5nruhfHHQ9S8NeKtW1Sx1PwrN4W3DWtM1iFPtNniITDmF5I5Q0bKVMTuDnGdwIGVD+0ZpMH9rWus+GvEfhzXrFLWSLQtRgtzdXy3MxgtjA0U0kTGSUFNrSKyHmQIOa4XUNE8TeNYPijYp4avNC8T+LLSO+srDVLi3kisY7eKKKBbySCWRUeeVJsCMyDahJOVIB4o8LePfH3iRvH8fgi60LUdHGlpa+HNU1G0a4v1gu5J7nbJDNJChKOFiLuuWB3iMHNZuUuZXjZO19dleza0d35a+mlyGnyy5Xqlp5vs+2nXT1O6t/2i9MubKeBfC/iNfFsOojSm8HvFarqJuDAbkBXM/2Zk8kGTzBPswMbt3y12fw8+IGnfErw7/a2nQ3ln5dxNZXNlqEPlXFrcROY5YZFyRuVlIypZTwVYggnxRvC3jqHxyPinD4IvnuJdY3zeEXv7MaktkNPFsrq/n/AGXzvNyxTztuz+Pd8td34G+HniBvh/q0NxrGqeBNc1zWbvWpH0s2dxc2IlnLrDmeKeAnywgfCsNxba3RjSlJt3j+Ppt5NXb3taw7aLXr+Fn+Kdl03b9PVq4Cx+N3hy7sPG97Ot/ptp4PZRqUl/amJgDax3IKRn5/9XKnysqtk4xmt3wT4X1Lwrp01tqfi/WfGU0kvmLd63DZRyxrgDYotLeBNvGeVJyTzjAHhH/CHeOvFdx8fbIeCr/w8/iW5hvdDv8AWbyxa1umgs7W3VHFvcSyx73t2YFkGEIJw3yVpZWlr0uvXTy9f+CUtYvudsf2l9Ph1R9BuvBfiqx8ZyeW1l4VuIrMXuoROsrLLDILk2+wLbzFt8yFNoDhSyg9Vonxk8Pax8OtT8Zym70rTNK+1JqVvqFuY7mzlt2ZZ4nQZy6spHyFg3G0sCCfF9b8O/ELX/jd4c+MKfDvU7RdAsTo0nhWfU7A6hdxSiYyzwstybb5HaAKJJUZl80/IcK2w3hjxBqPw28YeDodJktfGPiX+0PEnkXM0b2mnNLc7ra3uJUdsM4QDMYZcpKQSFyc7u23R/etunWOr3s9PImSt8Pdfc1r6Wl7q7rXXc7CH9ozSYP7WtdZ8NeI/DmvWKWskWhajBbm6vluZjBbGBoppImMkoKbWkVkPMgQc1Ug/aa0+8u7jR7TwV4ru/GVm8gv/CUcVmL+zjRYnaZ2a5Fu8e2eHaY5nLFsKGZWA5DxR4W8e+PvEjeP4/BF1oWo6ONLS18OapqNo1xfrBdyT3O2SGaSFCUcLEXdcsDvEYOapaJ4c+IPhr45eIPi6nw81O+g8TWK6U/hmPU7BdRsFhWHyJ5C1yLYq7CfeI5WZR5WA/IUi2/iVtX16JXi9vtPRrp/dsElZvl1Vlb105l/26rtPrtqfQ3gvxhpfj/wppXiPRZnuNK1O3W5t5JImicowzhkYBlI6EEZBBrarjfg74OuvAHwv8N6BfOj39nZqtz5bFkEzZeRVJ6qGYgH0A4HSuyqvVW/H8QCuT8V/ErTPB/iTw1ot7bX8lzr98un2s0NuTAkrQzSgPISB923l4XcR8uQAwJ6yvGfj7beJ7zxV8LZtA8E6v4ptdG8Rf2vf3GnXNhEsEIs7q324ubmJmctco2FBG1W5zgGoJSklJ7lK1pN9n99tPxOl1z4rahpPie80y2+HvifWNNspEju9fsptMWzgzGkjErLeJOQiuCdsRJ52hjxWf4A/aA0r4gxXP2fw/rul3KLZTW1pfJbGW9t7tXa3uIvJmkUIyRSsRIUdQhLKtcd8QvhTH8QPH8jp8MBpPiWDVLS/tviULm0byoYpIdywyLKLxHaGMxmHyhCSWDMysWafx58LtV8Jx3F58NfDMfh2OO8XNv4OtNMt7+ZZVLXV1Ct0BamdmEMeZxkIs+DmQVN7Q21/wCDr/wNNP73RtXlZPRf1/XfytZ+90Vznw6/4SP/AIQTQv8AhLvJ/wCEm+xx/wBoeQVK+dj5s7fl3eu35c528Yro6DNahXJ3XxK0yz+I2meC5La/Gqaha3V3DObcrbFYPI8wB2I3H/SYuVDDO4EgqRXWV4z42tvE8v7Snw/1Sy8E6vqXhzTNL1KxvNcgubBbeF7t7QofLkuVmZUFs+/bGT8y7Q/OKgk5JPz/ACdvxLVtbi+Iv2pvDPhR7m61PRtet/DiTXdpbeJBbwvYXt1bLKZbeLbKZQ2YJVVpI0jdkwrnIz1Hgb4u2vjdJIf7B1jRdXg1GXTbvSNQFu09pJHHHIzyNBNJEU2TRHckjcyKv3sgeX6F8PfFmrp4Z8C+IfCBi0LQNfutUuNfa6tpbDUbUm5MMSQ+YZt7efGsiyRKgCyYZwQCzx58OvGvgi0ib4V6B/wjtvuntbbTfCVvpUH2WNMG2DpdgQrbySmWSfyR520whclDWSk+S7Wv57eluq9LPTqKLbtfp+OunmrWa89L62X0hRVfT/tX2C2+3eT9t8pfP+z58vzMDdtzztznGecVYqyE7q4Vyd18StMs/iNpnguS2vxqmoWt1dwzm3K2xWDyPMAdiNx/0mLlQwzuBIKkV1leM+NrbxPL+0p8P9UsvBOr6l4c0zS9SsbzXILmwW3he7e0KHy5LlZmVBbPv2xk/Mu0PzioJOST8/ydvxLVtblvxJ+0hpHgnWb6z8TeGfEvh+zjtLq8sNVvLaBrbVBbrvkSDy5mkSTblgs6RFgrEcA1veBvi7a+N0kh/sHWNF1eDUZdNu9I1AW7T2kkcccjPI0E0kRTZNEdySNzIq/eyByOjal4i8a/EqVvF3wn8RWmloLnTrC4vbjR59NgtnGJJpVS+eZ3mCBceUditsxhpGbmvHnw68a+CLSJvhXoH/CO2+6e1ttN8JW+lQfZY0wbYOl2BCtvJKZZJ/JHnbTCFyUNS7xinv8A8P8Ah5/fpbWuW8mrr+vPr5efVpn0hRVfT/tX2C2+3eT9t8pfP+z58vzMDdtzztznGecVYoMk7q4UUUUDPPrL4raheeIrqzPw98T2+hW09xDJ4nlm0z7DiEuruEW8Nzt3IQP3G7pwBzWf4A/aA0r4gxXP2fw/rul3KLZTW1pfJbGW9t7tXa3uIvJmkUIyRSsRIUdQhLKtcdpvwpj1v4raR4htvhgPAGu6Rqs95qXiwXNpI2swSLOHgjlhlM80TySI+y6jiVAo2ruVQJ/Hnwu1XwnHcXnw18Mx+HY47xc2/g600y3v5llUtdXUK3QFqZ2YQx5nGQiz4OZBRe0dtdPz/wAvS1no9GravNpPT+tP6vfSzumn73RXOfDr/hI/+EE0L/hLvJ/4Sb7HH/aHkFSvnY+bO35d3rt+XOdvGK6OgzWoUUUUDCiiigDlPDvww8P+FfGPiHxTp0eoLrOvlDqElxq13cQyFBhNsEkrRR4HA8tVwOOldXRRSSSVkHW4UUUUwCiiigAooooAKKKKAM3xD4es/FGlvp9+bn7K7o7ra3ctszbWDBS8TKxU4wy52sCVYEEg6VFFABRRRQAUUUUAFFFFABXPaX4/8P634p1Hw7YanFd6xp0CXN1bxBiIo2kkjBL42k74ZVIBJBQggYrgf+Ec1dtbZvh5p1z4Ps2uDJdXupZTTrggkOI9NPzkltxZl+yljtcSSA881d6jNrH7TXjywtdJ8QRfbvBdppFtqU2g30WnvdxzX8roLxoRDws8R3B8EttBLAgD0i5LVpN26uy/z/4Y0jGLvzO22vq0vy1O4tf2kfh3dveouvSRG2g+1J9o066hF7D5iR+ZZl4gLxS8kaBrfzAWkQDJYA9N4F+I/h74kafdXeg3sk4s5zbXdtd2s1ndWku0N5c1vOiSxNtZW2uoJDAjgg18oeKLfXPGCfBG/wBP8C+J7b/hWP2e48RadPos0LDabaJobXfGFvCmx5h9mLhhAu0lmVT654Y1OPVNV+IGqrbanpP/AAnVytjoNtqel3Nnc3DQacFaZ4pI1khUlXGZQnEYPG5czUl7OMnFc1rr12s1vpJ6Jd1dNoyh7zjzaXSv5O7TXqtG/XZHbaJ+0B4B8QXt9a22veQ9pZy6iZL+zns4bi0jx5lzbyzRolxCuRmWEugyMnkVUg/aR8AXFleTLqeoLcWskUT6XJod+mpSGQOYjFZNALiVXEUpVo42VhG5BIU48I8RaPrvxR8BeGtL0jwTrtlqvhHwjd2eoabqmmSWUct0Y7aMWUE0qLFcBvKkw8TNHhVyw3AVf8Saxea9+0f4T+L9p4T8Wt4M0LTW0e/Wbw3eR3yzTLckTJZND9plSIssZaJGH+kEruVWKtu03Hp36ddbdm7RSv1UrtaCjzOHM1Z6afNXXqld+drW6n034O8aaJ8QNAg1rw/qEepabMzoJUVkZHRirxujAMjqwKsjAMpBBAIrbrzf4EaTd2PhbWNQurO504a5r2oavBZ3kBhnihmnYx+ZGQGRmUByrDcN+DgggekU+zat5dvL5bFdWr31evdX0fzWoVxHjL4z+Evh/rVjpmv391Yy3ckUK3Q026lsoHkYJGs90kbQ25ZiAoldM5GK7evEvjh8QdKudVXwHq+ieKZtEuEiuNVvdN8IarqcFxFvDC1jktbaRNz7cSMWG1DgfM2UaTlJJf1/Xz9CkrpnZ6/8bvBnhfxVH4e1TVpLS/aaK2eZrK4NnBNLt8qGa7EZgilfem2OSRWbeuAdwy3wj8cPBvjm1vbjSNRupEtHt0dbrTLq1eQTkiB4kmiRpY5MHZJGGRtpwxwa8a8V2d9rFt48+HsvhbWzqHifxRa6lZX40iaXT5rJns2eeW58sxRGNYZFMUrLIfLUKrBlrR8V+DJfgq0mo+ANEvrS2tJoLRry8tdT8RmEGOTEq2ccxuJoIEYQxwwuqIbqYhQI6hSfIpNatL8bXXy2v36KzEouTaXS/wBy2a9Vql+Z9IUVznw61rWfEfgTQtT8Q6X/AGNrd3Zxy3diQV8qQjkbSSV9dhJK52kkg10dUStQqO5uYrO3luJ5UhgiQvJLIwVUUDJJJ6ADvUlecfHbUvE2j+EIr7w9otlr9va3Cz6lYXVzdxvNAoJCRpa2V3LKTJsyix8qGGcE1MnyxbLSu7Car+0T4A0fQdA1qfWppdL1y2+22Vzaabd3I+zZUG4lEcTGCEF0BllCINwywrvLLVrXULm8gt5fNks5BFPhTtVyobbuxgnBGQCcZGcV8u/A74eReOf2XPAcvi/wPqFt4p0HTf7Ii0mWXUtPaXlF8q7jeO3aSBmWNpI3SSEbSQX25ruvhZ4t8cWvxOu/B+oaTLJ4ds1u997Pot3bujLIpjuWv5HNvdm5LySeVAimHOGPFb1lGFRwhqrv7r6fhvp57XFbRyT02/ryPdKKKKyEFc344+Ieg/DnT7e71y6niFzMLe2trKznvbq5kwTsht4EeWVgAWIRTgAk8Amukryj9oLQba80fRNZhk8XW3iTS7xv7IuPBVrHcX3myRsrRMJoZYFidRhnnURghfmU7cpuw0m9EXNT/aP+Huk6VpupT65NJaX/AJu1rXTLu4a2ETiOZrpI4ma1WN2CO04jCMcMQeK7+y1a11C5vILeXzZLOQRT4U7VcqG27sYJwRkAnGRnFfP/AIb/AGeBD8MvtfjbTJPEHja4vL3UHtLTU7mOLfeTq/2O4aJ0W4gUiLzA6mImNnEYAArY+Fni3xxa/E678H6hpMsnh2zW733s+i3du6MsimO5a/kc292bkvJJ5UCKYc4Y8U29lbXr17bd7dXZd9riSdnJ7Xt5+tvP8Nj3SiiigAqpqmq2ei2T3l9cR2tshVTJIcDLEKqj1JYgADkkgDk1brP1/WYPD2i3upXUd3Lb2sTSyJY2c13OwHZIYVaSRv8AZRST2FTJ2TY1q7HPTfF/wfbfDu38dS65DF4VuLQ30OoOjjzYRG0pZY9u84RGbAXOFJxwag1X40+ENF8UaV4futSuBqWpiAweVp1zLBGZ2KwCadIzFA0jKQiyshcjCgmvBNCvrqL/AIJ1XOiv4d8UJrqeDZ/D50dvDWoC+N61o0SoLfyPNZd7qPNCmPqd2ASPRbv4e6D8QdB8L+KbPR9Zg8RXMFpaRzXIvtONt5RYrcXNlLsVpIP3rRNPESHKbcBs10yhGLlZ3Sdv69SpqKsovV3/AAtr+L+49i0zVrXWYHns5fPhSV4TIFIUsjFWwSPmAIIyMjg81crxb4AeOfGfiLUdW0nxB4eOk6TpttCttnRrzTvscm50Nn5ly7C+2IiN9qhCxnOMZNe01zRd4p/1/X9JtaktWk4vp/X9f56BRRRVCPxW/wCH1fxv/wChW+H/AP4Lr7/5Mo/4fV/G/wD6Fb4f/wDguvv/AJMoooAP+H1fxv8A+hW+H/8A4Lr7/wCTKP8Ah9X8b/8AoVvh/wD+C6+/+TKKKAD/AIfV/G//AKFb4f8A/guvv/kyj/h9X8b/APoVvh//AOC6+/8AkyiigA/4fV/G/wD6Fb4f/wDguvv/AJMo/wCH1fxv/wChW+H/AP4Lr7/5MoooAP8Ah9X8b/8AoVvh/wD+C6+/+TKP+H1fxv8A+hW+H/8A4Lr7/wCTKKKAD/h9X8b/APoVvh//AOC6+/8Akyj/AIfV/G//AKFb4f8A/guvv/kyiigA/wCH1fxv/wChW+H/AP4Lr7/5Mo/4fV/G/wD6Fb4f/wDguvv/AJMoooAP+H1fxv8A+hW+H/8A4Lr7/wCTKP8Ah9X8b/8AoVvh/wD+C6+/+TKKKAD/AIfV/G//AKFb4f8A/guvv/kyj/h9X8b/APoVvh//AOC6+/8AkyiigA/4fV/G/wD6Fb4f/wDguvv/AJMo/wCH1fxv/wChW+H/AP4Lr7/5MoooAP8Ah9X8b/8AoVvh/wD+C6+/+TKP+H1fxv8A+hW+H/8A4Lr7/wCTKKKAD/h9X8b/APoVvh//AOC6+/8AkyoW/wCCz/xoe7jum8H/AA7a5jRokmOmXu9UYqWUN9syASiEjvtHoKKKAJv+H1fxv/6Fb4f/APguvv8A5Mo/4fV/G/8A6Fb4f/8Aguvv/kyiigA/4fV/G/8A6Fb4f/8Aguvv/kyj/h9X8b/+hW+H/wD4Lr7/AOTKKKAD/h9X8b/+hW+H/wD4Lr7/AOTKP+H1fxv/AOhW+H//AILr7/5MoooAP+H1fxv/AOhW+H//AILr7/5Mo/4fV/G//oVvh/8A+C6+/wDkyiigA/4fV/G//oVvh/8A+C6+/wDkyj/h9X8b/wDoVvh//wCC6+/+TKKKAD/h9X8b/wDoVvh//wCC6+/+TKP+H1fxv/6Fb4f/APguvv8A5MoooAP+H1fxv/6Fb4f/APguvv8A5Mo/4fV/G/8A6Fb4f/8Aguvv/kyiigA/4fV/G/8A6Fb4f/8Aguvv/kyj/h9X8b/+hW+H/wD4Lr7/AOTKKKAD/h9X8b/+hW+H/wD4Lr7/AOTKP+H1fxv/AOhW+H//AILr7/5MoooAP+H1fxv/AOhW+H//AILr7/5Mo/4fV/G//oVvh/8A+C6+/wDkyiigA/4fV/G//oVvh/8A+C6+/wDkyj/h9X8b/wDoVvh//wCC6+/+TKKKAD/h9X8b/wDoVvh//wCC6+/+TKP+H1fxv/6Fb4f/APguvv8A5MoooAP+H1fxv/6Fb4f/APguvv8A5Mo/4fV/G/8A6Fb4f/8Aguvv/kyiigA/4fV/G/8A6Fb4f/8Aguvv/kyj/h9X8b/+hW+H/wD4Lr7/AOTKKKAP0J/4J6ftQeKv2s/gvrXi/wAX6fo+nalZeIJtKji0SGWKExJbW0oYiSWQ7t0zjOQMAcdSSiigD//Z)
What is the probability that the restaurant is located in the northern portion of the United States?
◦ 0.56
◦ 0.44
◦ 0.40
◦ 0.16