What forces are responsible for lipid bilayer and micelle formation?
1.covalent bonding and electrostatic interactions
2.hydrophobic effects and hydrogen bonding
3.electrostatic interactions and hydrophobic effects
4.electrostatic interactions and fluid mosaics
5.hydrophobic effects and fluid mosaics
Question 2The following molecule would be expected to form micelles.
Question 30ECBGsRsqQNqs6MJasuqP2ZrLCCGfoEE2Kl7UJG4ZRXNWR2nM2rWw8pav4Ck/ZtBKmA9MI+2Av5oO4lIPBljbLOEUbop2FhrTBjLShT+/UOe/KW3FEA+4YbMLSd3gwfDOwgy2CE22Abau0Zx7O+9GW6H/0AVbMoI22Tvph2qRHmVTHKh/fhCM8RnH07Y5N/qn+RzK+AAAgAElEQVRMxA+N4pGO2jl48PBNW+YBd8rDtgkmNhkYZLZl0NdhZNgWBwOXZdh2lE6li52llXFAYwH5Qh/CGgIcK79cyiGsiQ9mMJ60BzRbYE1dUWbwwKht8g6Nagdy51vvHmEH/ikO+ZOX4pO+vkUDNg9lQRvHwhEr2zDKbPWiHcnQT8EaZo3yo9FAWx/ipHZCnqQrP94HM6IrDEP6PBiEBOijXTO+0eeYT2B+eDDUAe0CHoE5hDbA+I0BD+jaFi2kj79oCNtL+O4JNvkXYk1+PKTXrGxgA760Z9oH4yJMMqvaMtCBhgjmDRzQzLF9UXWpcLLJS/WOTXwe5Y9NXMUPy8T4zIOhfVIWtBYwlginzI0wt9LgMZZjuDWWsYO5lHFbhvwxykvu2KJH79jCnHeVQf76DsPgN5hRufAnDmMi4562r9GG0DzDvIeG8rJrBRzQsoN1llFX2wZrykb6wpR8w4e0CYcRTZQlbNfMD7Q7cERIRYvIXMJYx3yI0TlH8AVr2jX8L/kqP8JBC+njpnYHvaJTYRQH920ZwpGeyhiGxQ2j/MAYg825QRaywJd5BuFIu1c8kJlretnVQ19lDqL9SHujMNjQQF7Kj28Z+ek7pJNy44+ww4OB14FedgfBLzEvgjXv9ENoR2ClfsCacY76F4bKB1u4kCf58C2cRaNoDuNl3xMOWI0fP87a+IE3EsmZoTOqVcuWy+csT+HZXFdPOxS/mZRK8en+bREwdswYZ+44lwTBhFGHzjaULBGt8C2wZEOTgAzpkxvhwrCEUSWE4Qd7Hyws7uRB2upE+m6WZ1jpog2bdDC8q6PhpgGBtFgJo/ExyDLJsheUSwK0WgPjiHDEDV4wa0yCrNZkTRaH0D/r16wMCi869U2HYHJnEmJw0iFg1LD84CzMgJhaJinii06lgR3iQhjhk6UF95BexSMNuYdhwgkbd4WXLRpgDBDsWGFlCwx1gJvqiLQZiNgmANYwaqQt5kPpZG3RhHsWO9xCf4UJaVNbg3FlUKLfwhTAuHJ2BEZHBvrxg7kHc8IwWdEeyIdHGCgPuSlvpYWtsOF7GJ530ReWDRoxuBFGjzua+SofzAIrkDBp5EM5FI9wtGsEPFZY2VpBO9NES57Kj7TVX5Sn8gnDyI3wmKwtf2wmWs52EQZmizGSPsgkK4OwAcNAf2MigCbolZBEOOKHGOIm3PUuOvSNTVoY4ac0wvSEO25Kg3B6V9lZvGBlHY0RkywYs/oaCkcIHrQTzq6wTYNVSdoQmMuENCiP0A7rAPfwW2k0s2Ek0VQRB4EfWmgLMGDCiu2A2spBv2OVmK1RxKWcoi1Mn3LiThlIm3fchGkYttk74cFYcWUrL+WLu7AmfdoE/RLmEUYY/BlHZOiLMOlojHQFNG0oi1f2W/FlZ/1FA/RhoAvDN++UhfGLXSO8I1CAH7TB5OCGgaFktZr0GG+YZ6644grXbpGnyk9ZRQNxcZeNu9IjTdHiGWT6AH4hzaSLW1ge5Sk30sENWnWRCwIe/uF4SDvmMDnnhNCI0qaJF6YjmkJb/rLxUxmw9R66ky7u2JSdMYM2ymIaYwftlj6H4CxsWATgPBp8GOMdWHM7HotvYEj+pKcnzI808M/Sg7voC2niXQaMMao//BSvWZkJS9/kLBvaA/gQ2rUEPPzBFkEaTS/bcfmmXWvMFi1hvtn3sCyijTAyKldII37gx42xLDRQDnZ+0K7Zdgf/hGHspk9CE3M2TDztA4Gi2SJQiJewFh2hTTg90CfaiCOjsuOmd/wIzzfuKhvu4MpYzS2I/397d/OrWVbVcfypruoXuquNNM2LI9H4Go3/g9E5/wHBkEAYdHBgwhRMx4QBIwJ0YMS/wYDIFDSSIGgCgh2MwSYq2okGiH3N5zz3W7Xq1L23btW9XdX3uWcl59nn7Ne1f3vttffae5/zWDgSbrGl+HQaGXGKge602AQD16T4iqfC5DN1O//iTD7WccTTLr4Yy7gkzxa0kEUtBqkFTzvU8jMvhDFjlDsp3sKjunlGYTL5menn/c2/fPWvPv3yyy/t3v3i87sXb7+w+5XbL+xu335+b0Ufr1q8cOzqmJh55pn9ALcUbBXuaN+hgEhIWITiqXBMiXsehiZzj+s+vnRu/E4AJ//4ETapZ66456ln5YmvsbmlDTO8CHNRGIUrZ5ZZeeLzJ3jSFId/5bkvf3WwauD9B53bGWYrv7ZXkbPivt5FqVq50fY6e+VNDN7Oe3UhSyaHFA4+DMA6t07jnoI10bFiiUerk2GgvlF+6gBPGLnnz+151pFf2MtnPpdOfOWUV+VIx7DzSXNHYaz0UVD41qa1FYVkcmGwNYlUR32IAag8lzwvi/AV4RsfBh1lGkxNJMmKiWOyJw2+DcjwhrsBytEdaZH6J4cTw4lfZasTCsPihGF5MRTFqf6epS3ekslxuxiwHDtxrIosm9gYzKSJTOQY/Y4MMKoNAOmq4si7MvK7qFu94a08elLZDHp1I88WKtzD0D1jw2ofmaFbO/JYXmHA5Sdt8p4fvt271Kn2DE9lhb20/D3zL61n1wyHtUmC3VwDLpkgH9Iltybsjnh5AZqrvskafiJ5R9M/v0d11YVswptMK5+MM5Bgi2ACa/2Un1VVPFg51g8nFuKHW5h4doVX4WfxPOtbnuVX/af8kV+GKOOCLmEo4bkJmjzw6giboz7cForgXZ5n8XSesPie+bl31a7klF6wU8i1Qj0nuwxQfZKf/gk3fVLbkC91dYUrvjwru8mmNMoUP17iIxyrz3wWR77FlR7xq27yZtRZKHT0WL8kG/DWJtLou44b0SEMFUcG+ZEz+cRfvMXLRV154xUPsFCmcdFlYs4oajdRXLiRaTjrn/o+XmEdBvHLnX7xyj9y71J+/hNPflO/yI8fPso7V55w6oiXkyudroB1RK7oaUa/ExXNAciZvLRJ7acsfpdF5QdrekMfI9fwZhTBtPJM6JNrMq9vwplsF4eLV1dU/xTmqszSwGjiJ13yJR9tIS4c8i9veQl3ycOYzWimRxjT5Fp/lD4MGf0MI5f33+hPWMsjkq8riteeL+IqRz8iz3A2NzInMh81vtB9XIsV5qrizQ9y4GXWR71hXP3WfD+I95uv/PlffPq553zlxCe8jab76u3rn8AJKDABzN3tnrpxrHSOB+MpABrOhR7EzEWAvUhaoBF2OxMmJIR/KrzyVg8NqB4ayMttVtUpJf4aa9a9dCe54SK++4TbsyuBxBslbUULb1wrFDqhi5/OqfM2UZWmfLgRf3WzTUwxOetppd3RAX7iWo1ymdAwjljz6kvQqnv5PQ43/vGgTTrep2OnJLWDyZr2429iZiJPYelsFFyyR3G5n/jARf0i4cXnJ25+XO0ljY6HiptbR2aA2g3wVTgrT1Z9pUOUZy/jG2wZo1x54qV6kwvU8/JwgZ/Jf9nENxdWlBLFrh4mlvA00DYhI2+MJ3xqE32BsnWfMo1feZa/uiTnZClc8QGX+czPczIHc+Q5hedZe+sfsGYkw9rKr1UxdVEeGfDumlVIuxmwtlKFXzT56xk/k/cl4iP+yCuZmXmqh2OVBl1Yenav3mS3dCb02gK/XHKkbp7jfeYf79OvcpUxMVXWGndxa5/CufLDi/5mwm4CaeWX7ozItaMS6mVgM4l0lDGs5YPw2FX51aW8LuqGQ/Vh/JNrMgO/3jNrZ4A/nQp7upy8NxaYIMVf/IYRf1f+Z/GNJySue5j2XPrygrUJgVVTWJtEzqMw5JpMmyDYBbbCbsLOMCH38sfjZVJ1Lc/qk3+8k2N6xIQZMdjwol8i/MGaLBu35MNoggGdw0XlS27dT/3hWTqX+0mlKw6cw7d8p2scZRiZpBsX6RHjSeOC8uHcRyrgbPfLTpm8y1+e7it/8nSRe3musS4/E0ljtjLFg737sBbPHMWEsjGTXGsPzxY03EuDuLCSV3LkuUscYcUVvzaAU2n5uc+v/JUNa7JtIcv7obAWX77SWKBIZ3sP1zvHdh1nmeLGB//KWyJd8Ee+8kPx7d5YaA5Cf5DtxkdGXbIOd/MrmMJWfekSczR+UbJcOfyrT2VO/ISLKw/+pRPXlb8wz1zjsg/S0CFOr8DaaZB4Ta7JtgU4O3T+hy55Kq/KVmZ5V271uWzXmMEgtkBvrgQbuDL46Wxzb7qavuOnDehEmEfSwAWv7rme3RdW3JPcGz/88b8dvfe97949/+zTOyJPLekmZMNxu4WW43VHJGXkoQPxA9hTS4LAE2k2nmeMzfCR0RO/BbIvADm+QHB0RIONo0TArC7VA7C2/xxJMynTiDowpUnhnIdqIAJa/lzXFEoTURa/Y0P41KnwpIPKQ3wTa0clDZb81EG4MPHlJw2hsmNksDXRcq6awSU+vk0cG2B1Fgqq+shXPk+KKl+dYKKjwAMudmdMHPBqIqNzm+DoWFav/fN4JL0LkUnkuXvlIHidRjM97MQNG8/eE6CI8ARnE0oDVH2g1V4viJtQ6uAGXsrWgGyi1oQSD1MeTuPpYfzjf6ap3pVFsVplwouJi+OBjDwkjsukh4xQSCZodsC8XxIxpNRZeHUvLLwnL/waNOQficMfjym/8rNr6OVpgy0+DQbtgkovHmPfyjqZ1t/0E5NjeRanssQvb+5lUfWUp3KTG/WBk4kZQ8MqH13kwxJkJwrr5NviBSMvgo0yptyuyxRXOH/lwyKCd/HJYG0cBsJMasi1xQjpLdQwTsNLXs6t63OOEuqPViFN2EwQ6ifxKp1yKiNeLsudMl2e6mZgNTmnDy0OeefSffJAd+iPrRi3A6atwk7e8Aun8j+PK4+JmXLDQb5wwp+ji3ZE6TnPZBspVz0YoPocjPnhmWGKasvLxPakPPFeGYVXF3yQa3Ji8mLMNJbpn9Wf7tMfYc6AZXTQi+k/+aur+oWb/GsrWMFslrkAMH7iS5nyQvJD0tIbVtbpt467WjAsXy6MrarbzVAm+ab75KmfKp+hV1t6vkyqDuXpeeLBnw40puPBZPhLX/rSHazxqT/im4y4tyNjN13/RLAJa3VElSF9FC/8YIPW9cVDWIS1eIwHiypOrMDdOI5v5cpP3gxrCyveMZGHZ2O6/ifeLEuaeIvX+LyoW37qqFwu3BBdbXxn4DM+7DjSKxFeybUxRxpjkA8B9d6vePKEc/zzq0yuuhfuXvmw5EoTDoWJm5+8yCVj35yPkUaPWNia44q2N9d1hJv8mvuSa/nQ2c0j8YNmuYvHJf9UTmXN7I0/5IZe7DipOZNj6AxXcxB91HHI5BdW8FGfiXP5r/1mee5vSTyZgsPdrlCDLdmt0+4LvGFvicKX7n5hjQFluHq+L7Mn6GGwN4n1L83urYA6dzpxmXy710G8OMZAstJnYjjjn1UdjSZujVjeOozyKTlKg0ATCv9DZKDRVkhjuzxLa/A0mDumxVjTOadgKMcEwMTL/99QnsJ1CEaETmGibvWAUkrRy3uW+STaDx7VV93xYxUYz/izmgM3A5qJproxmqSBC4UiTJ0Mcjo/PGa9wp8xIEyadV2VwW8qe/zAGilDG1E+yrfaS3mKT9GYAHhx2uCkM1NIVta128wH3xQqVxvhLf6WiBf8UQdUntWz8nrGl3e/UPLqeAY5YlRTtPpAx2QMFpSpCbPJjT5kMOaH1uXK06Vc1yyn5zCH8cRdnzAopfBNbhwv0abytIrEKDawSutlXlhTptqYLKDKWR4GJvGV/2W48IaBS7n4yg9GZMPxBjKMf4YQrOHL4OaaUEhP1sipiad8yLXJ8cSazMFMPFRZ6hZNGdDPkPxcEd0Ga7KsjekibawO8FYGvk0G3NOD/lTXCrA8lacd8SGNMifuk4fKzK/nR3XxV3n4qF3xazDFF5mAmwUMGNMfdkthLr0JPN4ZrvqwCQ+83cs7GXXf9SB+8QEbOMs72TZZdM6eDmEMkWsr66i6wNlqqjR0twUtk0d5Ivwg4dKQl/JfAi7wo35rmm05w5QrfnrAMz7FJ0cMEWMnXL1jgG96Dy6MKTqSrtRW2ghVN/nKD7k/iQfh4gtzxU9YKL9+pe3JtZV1OIrLpb/0K3yRFwYFfoTJJz7Ij/voJH4Ke1h31lPak56rG3yN/3izI0CX6Kv6LqwZpuTJRJ7s0RHiGE8twJCrjCVlqWd1CRP+/Kq7ONVdHO2nfHLtQtrT8XLl02GO9Hs/lHyKj+gLOpvec2/XiDGqDeVfXpW9JBp6zXN8FHZRt/y46qR+XXYO4aYO6RJ6WV255m/mlFw8G6vUVRpzLYsb7uWH1BOW6XBluiqvePzkJ672C+fwMb5pa4vIZJyB5Ai0sqVVjnJhjQ/tTq6906OO6oOU1zgQL0vA+Jk8De8L3SprkjKSAfJtIwLG7sNav0XGKfzD3PyFPNPV8oRX5F6+cAy3wtbuje//878efeD9L+9eeO7pHWiwt0xXxobR0dF+4lFiBT71FOH3+YY9KVDaWUF+i/9xpWOqfN4prtXyz3/+87tXX311GZwMQp/97GcXwSE0AE1wAApYVvlnPvOZpVGsCnzqU5/afeITn7iz8nVW3cJFPshzQuDeESGft2b1EwIKXPnF3+O//4KUwRSPJv5WAuwkUTB4Fl9+FBPjz3E6E9v8Wdo+lenFXvXScWzXR8pUljwqs7DH5eJB+Xh2qZcrfigJk2NtSPkyTFywo2zUyWTGgAufzjHjXz6RvCmR2rcylIO0DxLOz7My8WcA8oIpRaQ9KCaTnUj7eJlQ28AcXxSTyVdKSNzauDLVG/Vcfhdxa9NkIAzUSxgqjBvB1kUefVnmtddeWwaCcFEPdTKZMcGnyLzoyQ//jCZloMp0L6wr/8qNH+lMWpVloLFjZEIDa/wYDCaZOJJrOyzywoNrkrIqZ5arTJc2K3yme9R7ZZiMaHv1qW255C6jTf5WWTuWYYfMn+Y5qikewhudYxCQl8mEYxEm78ohV+qA/8pZ14X/9IOtdpAfTA208LXbbKdc2+OfURZe4huErIx6UV3dlI235Bof5X0apvEYtvK9DMLnrGdtO7EmTwx9dWaUfPGLX1wWvvhHdKIJkTo5oul9CAat/NVJvd3Dc2Ja+rUrLkykU26XL0vRI457kXd6G+aR9rVzaCELznQavuQTqSPCh3JgeR6eSn9etzY7qa2EuQrLpastWtGP6mg30qIdOYtmnRgj/urAQo38GCrJVeVLJ//KrK7qvm4TbYoH/Uh/8qK6NvdMh5D5yGKQnSw7WuTZxJ1Lt1Uf+aPKdF+Z5XNRV71mnvMZH9pbnxWHG6lT4yI58q6gXWljVQRrdcoAJNewli+/+kn1rN7Sd48f9z2Ta30CzvCWllFmPsMw84wvMhAZM4zLdkMZxcYK4zasI+WgypFPuE+9WHjpLuKqg3Jggaqr8pSjnkgcC0n6MXyNTcYoxn/pYM34JL8Wd41PvpiJ6HF5yUe+ylG3WZfqX509z7aHNb4sHhov+oiEcWQetcSH3Sy74ua5dAcZ4B9pw/CtjoVx4yW/yWd+F3GVHQby8YySb3Or5iLmyvQIGddedqHhrF7GJB9iUr/SxldYh2f+a3dp4TkekcOMHpEfPFRRhuts738G4mUDeX8pj+ajMQBqIk1JUoYpYjnG+xQMwAY6t/vzcCA/eSXg5Zsw6lhWt0zAKQvHVqxkURjiEmDCQEh82c2gY9XC4Ip8Dc3ggicdxooNBUlRWTmweyHM+0UmV+qN5B0v3OqtrgQKv+4fZzviU7n4qaPAiTLgR4lTOBFlJsxgYOJjNy5K4Rv47C7UOeQvb/nOuvGrvviYYYxWL0wb6HVOZ6mthJ5EVtUZZzqsASDShg0o4S5MuWFf3MtyZ761sfK657riwT0erTa5kMFLuImzFXdxYE4OXUjdDBaUkzpboer9MeH4SK7k5b72iAeYI3kqx+Rc37DNznA4ici3bXYvqlsBXpOy6nczrLaNrxl2mfeVA1NE5tQTX0i4CUOr5vCjk+gBR5TcSxvO0kgLbxNog4MvmFkwQeoqvjKUVduGtTB+6Tu7VmTZKpx7xnBfE1oyHD90EiPY5Abu0cRYfapz4bm1s+ez4hX/YV11VD+yqX7qj8LAPV1vooCsSgqjQ/rfE/7kuImlyYZ8rdBrIwsfdC0/ac9D4hpvtCVsrfjK37ERRtI0isqPLDsOxRjty52FqWP4yTu83b/dVJ0rU3nu8ycLnskhfuxwIIY1Eu5oG1lD3O5NhLQFfLQfHULOZllLouMfZcovDKbO5g9fE0dtSFeTc2PsmiymkGlHzvWl9JD89bPGkdJVV3y9HZjL11U5lbv2D2N1xbMxDtnhIPswZJAyUNDEmm5FsKZr7N64yGllVzflVAY/fPFLx5BfWNPR5NrcRBsz+tekDxkXnX4xz1ljK77+i+q/6zzwh3LX4Rd5Ls/aHobhAAPhnpPr+NAnjVMdi51YM6bU09wM1vSH1yToIuWor7xhj2CL4Fv41Gd2ThzFJdfa0X/t2Q1fEyPI3I9cM84YZhF+p5xXt8K5yp6uuofPjPeo9/I/qdxkTJh745wLwc/81TzMIodPxTvJgxjhMCVfc3yqHrXjEvmUn1t7g6iKQ+HYQDJBvrnvlI7OBd5dk+le08kTsBTuCrwAjKmeT+HniXgTQAKiAZCOmDB6xjO/6sZP3OJX1/MAvhRw/DMxIfBWIAwKhDy8O5fN6NHYSAei2K0O4MvOhXsdzllYg4rJC5KfQYExpSOaPPrMMMFSZkaXuCk59cFbAln9hHe/ZP4YfvBRmRN/vKOJoWd19IdicDEAUkwUs8uRSM/CUhAwnbtm5RkG6iy+Z0ROKB+Y94eYJjpzoKX8TFSlMUhZGWOUMSzKH9/lWx2mzC0RT6hf/o/qpmzUS/vCsbpxu8dL7T8VtXCTdgMavk0YyB7ZpZA8IzuVZE9aZ4SV5zgQIyvZlr6658YDlx+sTVYZ/ybtlaMMcdRH+5FnfcXKmAEgrMNJXcTnyrf83ddv89cu7i+Lyku/dF851SE8PJMv/MQrrNVHWtgy+MkbQ5EekNaRJbIIA4sF2iEMhFdX+Sv7pH7M3wBroLU7qP3wMndSpIcxnWEHw+o6w9+ONQpjeaFcPFSnJWD1gz/XZVPlyzfetO18Tu+TU/VyFJOf/mxyA6tWK6Wz6GKFGNllsFACd8bVw9RB/o7ierePXtKmdlKmcUSuTWJMbCxkeY9OOQhfMFXHsM2v9q7OD8PXkvkpP+F5Vn7iFG+WH69lrR0c5072YUGe6WkyJw/yaELvmJC2sSggPh0/eRDXszLWsi0MrnYvvP9ElxgD6JGps8m1dqS7Ha+3I9vJCjyri7zShdVNGH+EB/cuvFwGVU95kkv1DzN+hfNLlmc4PGBtAi4uHeIPWMVtXJQPLKzG6/+wNqmEhZ3S6qw+4kYwSPaqL/k1YTcPMf7SU7BWVkSm6Q982bGym2KxVjkz/+IrpzqFu/KKKx/3rvAo7aO68mqOUZnljZfKlr/w3OqkLu4t1Aony+QOaQNy6GgYrJ10EN9CKhl0r32qT/lXLj5cdIbxgD5yHFf++lCLOcqSHz1i/GAkkGtGvzaQv7xhWftVL3UP84Xp45948hgeM/wi95Utj+rKL3/lzXvxLAQa62HK8DSfs5gKBwvX3sMzHqofrBnk9Gn1fRC/t3bHR+WKuB+mCJojc8uLRbu+0eBFozUo+/eOSr3vQIFeXJWqkTGW/91UT/aOMBBKFJ+EexL/wtRBeALEPQ/gcKjuXGlqcGUxcBxpsStEqYijwa28txoUT4TCqqL0+NcRCQSFpDMSEJ1CWn/yZcWOMBlc+MVv9VIHdZKfS3hxlImXFEY8PA5Xua544OKPHzdSD88UAkVDwVC6FDNFRPkbKJ3xN1DaodNhHHlzZMUqhDzlU5mVWxl1OoO2iY08Jg/iwQzODFoTR0dgDALrCTv+4K0MgxjSBpXtWd7JXLK2RLzAjzxdypR3PFRObb6uV7gUbuJuNcrEAsbeS4KxiYi+BCuyiAy+ZNHgyUiCiXyUUX3dw2RiYDJql84AYGUoHpNVz1aSrKpbwaP8YN1OlfD4jX/1RcrjFw/8itO9tGsZWBI/5E9l4Rvu8p18CHcJxwOqXdyrl8mkQU3fNijq71Zpkx+DgMsg2UKKSY6dDnHkj9yHMT+8uLSVlUf6xyRpHnuSThxt7ugkXaLv6F/tVImDd/HkX508F8adeLqfz5PHJdEFf6ofLOFOvugwZU5dJl68k1NYC6dPTTbswFtkkp5cNwEh1z7sI71FJ3JXu8a6sOrYPQPA5NFRYEeftdskmBnE6SW6DNYwt9AgDxeMJyljlp0chf+M+6j3lS3P6rTOS7kuvIjvXtz48OxeGHlWP+F0CdnWz5M/cRigSBztoB0du2t3WDnxwnVJl0s3mbBbQPBxgHRSfIsHa2Mk3UGf2XFxTLc5gbj4lm+yXT3WWBQvXirnIq5yXeou37CtnvxQbmUJTybwTYYsINmp0b+9B0S/woi8m3DTuYhRitqxhIW6odoSP67aQHrjK92krUxYI/k35tkJ9B9Oxlz6yU4VGcdvuLp3KYuhhoS51FN9Jj/dr/tF5T+sWznSqSP+kwdh8RbPyk2uufqq47CMbJN3Mg1T8od/WLmQ58ZHO9L0tzxqz+4rtza12wdrcm2RbFIYkWmLPuSa/tb2LQiXn7iV1X345x+f85mfeGu/ycfD3IcfvlzRuk1nGNxcyBzLIpLFbzJNt9In8LG7pA3V32I1LE7jnT9Sr1tv+VNYwkfwXWwi/W2JtGdyD8CxsbQkvbuPtN9vkqFEe0Uo/gTN/bqSx9m8IxwdFyjxqEPolACNNJ4r0ijF12CzvjVgDV5DFG/6zzxNMk1STLwRo8jLfFZbpBU3tzydiTdo62xW4awgU4TxZuJIKeJPffhPXmf5ypxh1fWd5sZjblh4Dh8Dr6MocHGEhus4iwHXCgOsKDy7ElyK2oAN86CGutcAABnPSURBVI4cho0dEquX5MKxga9+9av3GUdWk3VQeRgAfIVHXvJIoYUjPrVF/NdWhecKPy2sOA/ryrPypY2H6lp+67LX4Z5NjlvR7iy/gU5aeNlBQpRVK7fq7cVtODEgyTaSRjuaLDIA9ElHM6xEGsi1awRnx/a0m3aGtfaD1cR68ryW++qX7Mh7Yj3vK/dRXXwoz9Vkorzy77lBOP7yhxVjEL8mHnCko0zSDbpkFGZNfPgpl/4gz4xSg8LMlzElL3Jt15ohauK+3sWoT2g3uoRhJG+8NOnB58R4Xa/ZFtVp7UpzmTTLxJvndRnqkAykO+DEuPTMSGpVlxzDjHya9NC7JoTw0h5k0Q4pXdA7b5XHKIK1dPL0GWmTm2mIaidGFle/sgtIl5CJ8IzHeC7/NW6XKb/lPfHMb+1OnN3HZ/HiN3+TNcYJgi38lGPnmAzTITATnz6Ao/Yw0bFwAK95bFmZFhd7j4sxy4hl+MsvMn4bGxlH+hUDl5GmT1WH4nL5RergubrkX7zqNv0vch/uufJS9rr8yaM4M75ndSVPLrJLzmFFd5Bh8w/4Ih8YSIeIQ087FUEXVC5dJh1db1wly2TabsY0jmBqDDY2mKgzHPQv7Yjn+JbvvF8YGT/qM+tdXFHm/UjyyLczv+pbZhPX+MktTsY//Qsj+puudPzLXIQhSt4R3OlebUIX0x36BazplXgRJp0jkmSMAeCYu/QR3si1tmqRxakh98Loj3RI+ZY2d12X/E9y19icFOdh/OR3Gl/lM/HPjwsrhjdsyKJ5AtmDlzk1vU2H6PsWQOBpvtyrA/KQFj4IH7eYNnt7afFb7u8MU7aODFrHA5dkxd2ri7c6j7d87nt3dHOxky4btD1nb/9vwACasJ5F4lbP3OL3DGxXDZqb32wMYTqQQVjD6SDeo7CCw+ApT2WI51kDSmfC8slPfnJRVJSOiQzBQJTYnDTG4yG5tRs8YFq9uSYXVhS4lJZP+lJQMKb4rQwbCCgUSozyNviGmY5mR88qhLYxEHiXq3KUYfBw3Eh7GQRMRk3Ya++FodXPbM9V0GN5vIzywwjDVnSt3viCmUGWoe9DJlaFEbyt5NryNrExUDqe5YXRjALxKDI7fCZG2odC014RrK2I+TKdiaTJEXl/kFI9rb6n+VfeZbmVk3tavqeF8w9vSt27PxZHGEhWyUy4e7eAfjDB8d6hiSGMvL9i9458In3GCiSsrT42eBvMI3rQcSPHKQ3a2s2Rm3RL+ciLrJ/Ge/k9afck/vi59Gcy2nNYww5ujqfQBV7uZ7S3Yqvudk29KOzoksGXvtEX6JtIHOm45NqkRn6R8hyD0q4m7LCm99sNFA+PcJ68Pkjuy/9xuhPneb/mofrU/+lgOpRxCCPGp5fd6YDIBNEE3GIXfB1PYtzQuRFsybUdVm1qUtpOVHGMmT5KoC/Jp0Wbwtfuuh7r5xn/rLAZ72HvL5ov2Qlrrp1Sxry5Drl0jNl4GMHMqQDHbekNC44Wo4yTkTh0j4UV7WmlfhpH4pFjHyjSrrB2/L+FsfI5r3tRDM5bzoz3oDJPC4e3ix6lq415jCJfFuxUROXwN88gu/o8w8pcxG5mZJ5iZ87YatGAvrcQMIlx5Bid9NoM5vpVpI26TuO7uFfRTW+TL3ML/duClHmFuZ85yOc+97nFeGJAmYM4ckjf0uXppOp+7zmyfK+ZS1ASGlU3qfOyrNVsisTkocEzBePceCtSgBUeJXjyXIMuTH6oxixdncmzgZYisUVKqUgjbbw2MCrD6oAOwSpWXh0znj0fMlW/2jCX4ocThaMTmJDAz+Br1Yuh4/0CF39GKVeHahJoAmpr3AuXDCQEY5g7nqdjUUBWe01wahf5XAeCtbrCy+TZZZLtWV8xgMKTYtJfTDDFp7xhpY+550fpG2i932UFuYUKRn9YU2qOeZkY6T/y0P7aRB6uQyd1NEkx+MG/3QoTE3gzfOBqgigcfmSen4FDu8DLBxhgbZANQ3qHMcAwENdRURd/BO+pv6RTxiHQlB2yiMggnK2A0yfkT/3tPNMNJt8mNSaYjCZYaAMYW6GHMz+fOXY0104ruU2fO4JjpZg+sYPBkGX44wW2ypReGn7y4++a/F41/PE++Q8nWJi0I4su4pig0710CFll/DuODgMLKbBp0s6PXifXPsTgOXk1UWcIaRsTVkdtrB6veblqWJ6X39lP1VkfZ1i6hzVZcyrAAhf5Js/klXyLw23SDVeXOBYPHWOfusERsxZq7azS2cqSRnvhxeX5OpA+3bFN4yGs6G16mTzD2Q4H+YY1+UbmgMZSOlyYBS9z0/QHDMk+2TZP1H4WtLjyUY442pYu44dyl4cD/TEv079hZX5Md1s4sfBCN5gXWnyFj4VdcjmJTrrXZ4Zeo3sAEZgAonStXBnQdGDhLpTA2bpvxTa/ICOM8pOWmzBWDv8GBGkKdx8P7ilyQl2c8lIeiiduZXGj8q3c/A/NnfUME35hwo9it2JGcXg2efzyl7+8HLVjSLoYShSQ43e1kXZyBMHkMmIUyctZeAM65dX7B5Vf3EN2YXOSvJlMO0tt0KWcrAD7xPz8QpcJjyMClFUyLz99inGE9CNKjHH0sY99bPlPA30C1jCPtB3c6xf5H6pLtumFsLcabjJuYsNI8r4Fg77jMu2CagdYw0laOPfOAez1EcaRVWKrxZ4NKtoATb0G73X7X0W81cMFD1e6xD1/z/mRPRMWAy/jyCKL1XP3sGz3zWolOYaftOTToltY6xPawCTSai9jX3taYaZblBtVfjwUhr+rTOHCnXXxnD6wGm53iNFovLXqblcatmQPmeh84QtfWAxMuMpLexjDxXGlM6zIW1Wmn0ycWlmHaW19lTE9L+/Jkvhhb5LtKJbdUnrDsURzIDtC5BeZyPuEtIl4ae186AfwS64ZQtrMO3R0h4WWDFjpxC3Pyl8yPOAf9ayudCpsLKhaiDEO2r2z2AIbxPDkB2u6ggzT44wkOEdkWJtpO/qDzoG1PiQenZ3OT1/P9i+fQ3VhDju6BEYwYBQxSGFv8Tu9bZ4BQ3inDzYD6VgypmImiFZLzksAXROA6xCFJZh1lhR4A0Lh4rsn4BrRCsK6DAqGn3jlI1/3yhZW+XW6+Dg0dyrbcIJLxqX6uwyKLtQqpRdEDQhWKRlGjCHXaUTZO97lXQwrvq2si68MvCg7Pk7L51D8w5aL1J3cwcmFHBmCMUzmOy5W2l2nESPIcSXHTA0CVtkj5SkrStZ7PlS3eld3z2TQLgdyJKP+4L2vdj1N0DvueBI2dBCj1qq6TxzPI0vKSMekV/ihqW9Oyved7lc94pPOJUv1X+H1aZibgBhskRXyJit2LKwMI7JuBf4ssqLpOJ3VXv1jkjyVpU0aG4TjJb7i8yrLvfq41LV6kCfP/JvYhE36PCOJv8lNq+3FW7v+LNIOhl3+PulenORa+cq9DhTuXKTu5IwcJotwIfeOMzYXMtk2sTyL9AnvF9HZdkyi2tlz99cJ7/ptmNs9auff7pL+zCBlhIYR4/QssjjrSKpjYt4rm6ScqbeUr01R/vW5me5Q7sM5HOiO3i0l6xYSnWgxRtoIsQBjsYrsGvukI5+bgXQsEQHpkWImtAyTdSf2LK6tUasnBDvB449S5IwbE0AWK6EkkOII1zkMtqWZ6dwTaFcDpDLiRZq1cPfMjZ/SlG5h7kB/YFLbVEV+YQCX2oAfQ6n3hkwivVyqwxgMxJtkAur4nXazwm4lwsQ946hypNFm1wFvdVXPibm6wyKcC7MKRvEwcPSZPsIwP58c3uJYdZTWYGvV1yDAX7tpR30urJWn3OtE6uwKf3i4hw0sDJbtsDH6TWzgTmfVJvCi5/QD6ezKmdQ4TtcAIQ7MkXxr38qXDnm+qgSPSD3q++ldYeoNh+rZThr8vKNFD2gDX6qCMQMpw7S86Q4ybEyh++kQk3YLNfKuLZXR+FGZcJ58zjYs/6vohmv1V09X+iP5KtxiFqyNqyY2xlV4rw1/+NiJM76SbzK9No6UAevkeuJ7FbE8L89TdpIr+Lpggdz72i0MYd3XA8l1rxVUHlk1NkqrP3g/1K6f9OWlTP1Dn4K559q2fA7dTXeoO3zDQ70ZOsY5+Pjogjmj8BYPZ5tZdKRH5NdCrZ0PJF9xybb2oGvQLFv4daCpx9WZzoaJd8NhLdyClh0jO9M+UuRUkV29xr+lja4DWA+qYwIIEORsrjOJVmMpAGC6xKMECJyjQbZGbeVLtxY88QFu4g18zxS2uATcVr8rIVYupZHiIOyuKOFXjvsGcLzMspWDxHEvvxRfeR2aW/3UGR5h6B7enuEVTuIL05audoXsHFJQ3ieITDSdofZ1FJ3J9rVnk3h5yyusy1953ZfPIbowROoLAxeijPQb2CSPsHMsEWYUE+Vve7uXgsUT3zsZdub0EZNHuxoGYCTtHGRrX2XBu/Jr/yXRgf0kV9XVM9yqP0zg5UMj7k3gHQ/1IQdfA4QhgpFJDD1nZU37OOpF9yHtUVm1M7dyxXFf+UuiK/pT/WBCH6hTdXXPH8b8XOGiunS63SCTdXrBhJ1RSrZNKMkrzA3MdkG5Jp4GYrpEfiahyTDc3fOXjluYexd++F1lUo+wVWeypF6oegrnP3GgH/qSIqwdZ7R7x0jSRuLDlQ7xPiQ9Ik07rMpSjnjxUHvmXmVcH8T7rDMM0MRfOLzJtQUqxo55EFl2ysJHG6y2w1A8R7zoEFjrO477Sqct5OtKZ8tbmXAWjjzX7ovHAf4kx+qvrq5kDT7mgHY27Sgb84yNPuTgmKPTLNIhWFuY9f6c/g9zeEsvjrzk67400tXOlRn2Bwj1nSqFQx7wIK9ksVNEdAPMfcjBYi3XxgiSfpHdMrjubsIDByt8Vp1MigkTcGfH9uxLIj75zEAi8OLV0a3WmmQ7n+6dFg0jT5Nq56dNWJzb1VgG1c5CGyg1CjLgMqy8N+CIgIk6HvGhfPGUyc9A4Xy71R0dxyRHnoVfh7aFS9jVDrChtJH7iZ/7OcnwboGO48iGHQ9tgbSbI0d2m4TD1KUNylN5lbkkuiY/6rxWvjChsLkIVkg8hqiz6e4pfvFcsIa7/mBVzBfAnNNG8tF/uLWXeFF+nuPlkNuC3CF1dD8vGOVP7hlHLoa/ozNw6/0N4SY2sDYwSCtcW3DTHZW37lt4yG+2x8LcFfsJw2Q19skTXFzIsyts1N9zCyw+V01WHcEzYTfowpku95EYRzjocuXVR+TtHvGvLO6UbeH8KhMPV1nO4YZ/dVKX5Ew9w1ccBAf1Jscm7iaIxk0LMQx/k3fvZshDnt6fM7G3si5/8slfHp7zWzI//uF36KSOMAr76lv/DZvkTlwTcBNxWPvQiLlGR7+0h4m9Y6Im7mEIa2VMGZVn+VeuOLNN8j80N7y5aLYBjBAc6GGXeD40gnzUyNgoHNZ2+Z2o0GYuebUgWTsuCU8YD8Wln2a7FPfQXDIYzuQuma6ewvgl33BBdLEwaexW351plPI+9+oen7ivKqd4EEigABURxrboT0myTKKLLy1KQRBuX8vwWUHK27+g2y0iwL5+Z2XACiMi/MIJLUFXNmJkfe1rX1v8fCKT0q8zyafOJq4z2MrzJRmrZ6xiK2gMsnXdlswP8Af22qOOcZYiELe2CgrprN7A2uquSQ2CoUlNK+v85K3Nawd58at8mNdW5X+ILgzI66x3uOZWb8+ucHGsgLK3+q4PCIOnlV5hMz08S28CLw9l1gfwwa+8K/MQ3XBR5+SMH/njwhDBp3tKn/6hG+iVsLKb4UMaxZPO/SwjDPl1KRt57r54V81VB1hVD5i6Jn7i5Ceeq3RcF9wahBlKFqhgXTwy7QMxGUNwou+T5cpXbrpLWqTs/JTjubCrhnf8qufUHerT2CcM5Qcb2FokVHcYuGDpOKmFK6vuYWgxoK9/VR6s5SvP4sF04lm5pTlEF37JDxxcMHFF835ibVy0eNg7uvIh576g1nFzeYRv93DWfuLPMuEt/1lePBySW/3CXZ/nZyxrATfZTAYZpR//+MeXI4v1C3JOrs1JovAMc/l2X17FjY+eD92FQ7iqKzlEzROEudLbwqTRLrDSNvcZSHe7yZLXtfhJYAlwZKXExA1ICV3h4ptAJ7jSJJTuvQDmE7qOEhFqk0DnzSkDisRZdWEMGp/xbqA0QXfMRb5ehrR7pCznemejKqNnnz71j+yMLtuyyrPS0J/viXsdOoY6hkn4nFRvfif5S4McDzBJr635zQ7kOcVTPtxZdv5Lhgf8U72585pVXmMB1/AzOTdp5xd+uTOP4vMTvi6r55nm0O/VOSzCpTqHRzrJs0mjs9UTf7gKQ+K6D+ueC8t/lrH2K+yqueGF7zCYfvnzSz7d588NV/52ne3c0eNwlMZVeywJhyz3XJ6zXSqjtp48lO4quuqxrqfnKXfVFbYoDGccu3d254yhSJhxdsomP8+zvPyU0bVkcOA/YRD+Z1VXHDgh9ybmzVf4hSl3kriR+2R3+vGf8Qo7RLd6wiHiR06j4sDbvXmn950Zn1F4ey6euDNtcfPrufizzMIO1Z3YqGNyusZGWPi4n/J6t4VORemusJ8a5YoHUMAuwAGREGVtVrXCAIko5OLwS4kLA7BJtcv5fmcdKRd525myCoMyskqrM/icsZUyn9MU7ryv1THH8nQagy5elMkQ+8pXvrL8D4Eje8gRBOXXGWfDLxGuwQ98XCfRaf4z7sRv+ndfR/Ncfif5Ff+Q3VnveX9anddxHlZhJ9fyX+d1WpmH6p/snYbFDBfnLLlex53P814+PeceEr7qdFK98std13nKpTCyuZbPddoZPsPmfXiv/dblX8XnWf/T6qneE9vTcFgvYk081nlUVvmu+ZhpD+0eFmGYe1Yd13E8m4ecl8QPZ/fr/M6bzyHEm3WfuFS3Gc7P82nj4zpu8adbvtPvpHQz3qHcq+e6rmf18+JyJ+b3GUim/ydPLQ8FuvvrwYhwRYwfRouODTD3DBMAB6S4895zho7/t/CVIp+5dLTCdmmNA/zS2aGa+VgNs2rg6EvGF+PIS6hcg4A0nZP0rXzvObXl7UtUzgN7sR3v8bMUsv1sCGwIbAhsCGwIbAhsCGwIbAhsCDwQgfsMpAemOMAIjBYGkh0bRoX3hpxDzMAQNo9LgGAaVeIJdyEGkpfMvcSYkeWDCwwvfwZmN8jXMsSzw5TBJK1yC7MrJE9fy/vGN76xlNmxP8aSY4AMKUdn7Do5ivfRj370znsF+MowWxjbfjYENgQ2BDYENgQ2BDYENgQ2BDYEzkRgM5COP8rAeGH0MChsIWfY8HPviqbBxC8DJ2OEweXlRc+MJB9b8HlML+366p3dIF/h8blSX+SZecvLZ0lfeeWV5at04vuzNsZS+We4OU7n/2V6edIRvf5/IF4ZUPKcZRS2uRsCGwIbAhsCGwIbAhsCGwIbAhsC9yKwGUjHeHix1scU7Mr42pB3hRgXjBIGhisDioHiv0b8P4BdJ0fi7ARFxfdsx8cfY9o5sjNl94gxxoDyOdj+40Vc+TOufKnExwKUY+dJHj7oEGX0+CTkhz/84eWFYHxmQNmFssOEj402BDYENgQ2BDYENgQ2BDYENgQ2BM6PwI1/eP2No197/6/ubj/79G53tH//6KkbR7vdkS/H8DDJ9pWSG7tjnyX34383WaLcSXh080q+wMTg6D+HHGnzQQW7OIyYaWQwWOzEMGR8hc7nvO3sMHJ8CpqhlEFVEzCKfGnO+0KMqf5gVjn+h8R/7Pi/Je8VMYT4+9Jdxo5n/7fk/0sYVuIwfsRhxHlnyUcgJqkPHhF+p8E24233GwIbAhsCGwIbAhsCGwIbAhsCGwL3IrDtIB3/90efHAYP46IvtTAuPLsYLRke3jFiQLXLNA0Rx+J618hnt+30MLgYWJ6/+c1v7b71rW8u7xbZreqT3PKvDHGVLV87W0hZLgYSf3HEt2Pk2YU/u1DC0GYcLTBsPxsCGwIbAhsCGwIbAhsCGwIbAudC4NZ+p2gf9/4v2N1/ROteH099/e3ekHOV/g6JZJeGoZFRFFsZGZ4zNDKQPDNEXMiGzdGy67bbfe9739299tprux/84J92v/HBD+4+8mcfWXaXxHvxxdu7W7f2/xvw5ptv7n75y18saYXd9P8Nx1/NWzI9/mhDfDGA+qPBDLYMKfy4V5eO1+VX3PLc3A2BDYENgQ2BDYENgQ2BDYENgQ2BkxG4devmU8sBuvuDbxwfr8sAOun0nDhSHhtHV9RGYkgghgQjg7HEjztJeHGLvw9vh8nBw6PdG2/8ZPd3f/s3ux+9/uPdv7z++u5P/+SP72Tz1O6t3f8d/6ndzd1bu6O3/LvvfreHsfrWYmjtj8a9Zefq+PPhlctlBDHGGGftHCmAP8JnbukWj+1nQ2BDYENgQ2BDYENgQ2BDYENgQ+BMBG49+/St3Y1jA6d3+o/49GCKvsy37zUO7uZ6Ra2iuxW4xxBicJxGdzHZx5jPd+DaHe1efs9Luz/6wz/Y/efP/nv3ruee2/30jZ/svv+P39099/zt3es/+uHu5//7P7vbz79r99u/9Zu7D7zvfbv9O19QB/SN3VOOyh3vWtk9WiO855HvPn78TmMpv83dENgQ2BDYENgQ2BDYENgQ2BDYEDg/ArdMzu9O7u8mbOp9dMRY8hTdO10/PaT418ndo/H7v/t7y8cXfv6LX+z+/jvf2f3117++e/O/frZ76aX37L797W/v/uPff7r7nd/89d2HPvSh5U9dn33mmd3RkV2ho71xZCfr+J2n64TeVtcNgQ2BDYENgQ2BDYENgQ2BDYEnjcD/AxfhY1MiedVUAAAAAElFTkSuQmCC />
1.True
2.False"
Question 4Which of the following describes how a soap cleans?
1.The fatty acids react with grease molecules to form water soluble compounds that are subsequently washed away.
2.The fatty acids form micelles which encapsulate grease molecules. These micelles are soluble in water and consequently washed away.
3.The fatty acids react with grease molecules to generate new compounds that can form micelles in water. These micelles are soluble in water and consequently washed away.
4.All of these statements accurately describe how soap works.
5.None of these statements accurately describe how soap works.