This topic contains a solution. Click here to go to the answer

Author Question: What forces are responsible for lipid bilayer and micelle formation? 1.covalent bonding and ... (Read 86 times)

wenmo

  • Hero Member
  • *****
  • Posts: 540
What forces are responsible for lipid bilayer and micelle formation?
  1.covalent bonding and electrostatic interactions
  2.hydrophobic effects and hydrogen bonding
  3.electrostatic interactions and hydrophobic effects
  4.electrostatic interactions and fluid mosaics
  5.hydrophobic effects and fluid mosaics

Question 2

The following molecule would be expected to form micelles.
 
Question 3

0ECBGsRsqQNqs6MJasuqP2ZrLCCGfoEE2Kl7UJG4ZRXNWR2nM2rWw8pav4Ck/ZtBKmA9MI+2Av5oO4lIPBljbLOEUbop2FhrTBjLShT+/UOe/KW3FEA+4YbMLSd3gwfDOwgy2CE22Abau0Zx7O+9GW6H/0AVbMoI22Tvph2qRHmVTHKh/fhCM8RnH07Y5N/qn+RzK+AAAgAElEQVRMxA+N4pGO2jl48PBNW+YBd8rDtgkmNhkYZLZl0NdhZNgWBwOXZdh2lE6li52llXFAYwH5Qh/CGgIcK79cyiGsiQ9mMJ60BzRbYE1dUWbwwKht8g6Nagdy51vvHmEH/ikO+ZOX4pO+vkUDNg9lQRvHwhEr2zDKbPWiHcnQT8EaZo3yo9FAWx/ipHZCnqQrP94HM6IrDEP6PBiEBOijXTO+0eeYT2B+eDDUAe0CHoE5hDbA+I0BD+jaFi2kj79oCNtL+O4JNvkXYk1+PKTXrGxgA760Z9oH4yJMMqvaMtCBhgjmDRzQzLF9UXWpcLLJS/WOTXwe5Y9NXMUPy8T4zIOhfVIWtBYwlginzI0wt9LgMZZjuDWWsYO5lHFbhvwxykvu2KJH79jCnHeVQf76DsPgN5hRufAnDmMi4562r9GG0DzDvIeG8rJrBRzQsoN1llFX2wZrykb6wpR8w4e0CYcRTZQlbNfMD7Q7cERIRYvIXMJYx3yI0TlH8AVr2jX8L/kqP8JBC+njpnYHvaJTYRQH920ZwpGeyhiGxQ2j/MAYg825QRaywJd5BuFIu1c8kJlretnVQ19lDqL9SHujMNjQQF7Kj28Z+ek7pJNy44+ww4OB14FedgfBLzEvgjXv9ENoR2ClfsCacY76F4bKB1u4kCf58C2cRaNoDuNl3xMOWI0fP87a+IE3EsmZoTOqVcuWy+csT+HZXFdPOxS/mZRK8en+bREwdswYZ+44lwTBhFGHzjaULBGt8C2wZEOTgAzpkxvhwrCEUSWE4Qd7Hyws7uRB2upE+m6WZ1jpog2bdDC8q6PhpgGBtFgJo/ExyDLJsheUSwK0WgPjiHDEDV4wa0yCrNZkTRaH0D/r16wMCi869U2HYHJnEmJw0iFg1LD84CzMgJhaJinii06lgR3iQhjhk6UF95BexSMNuYdhwgkbd4WXLRpgDBDsWGFlCwx1gJvqiLQZiNgmANYwaqQt5kPpZG3RhHsWO9xCf4UJaVNbg3FlUKLfwhTAuHJ2BEZHBvrxg7kHc8IwWdEeyIdHGCgPuSlvpYWtsOF7GJ530ReWDRoxuBFGjzua+SofzAIrkDBp5EM5FI9wtGsEPFZY2VpBO9NES57Kj7TVX5Sn8gnDyI3wmKwtf2wmWs52EQZmizGSPsgkK4OwAcNAf2MigCbolZBEOOKHGOIm3PUuOvSNTVoY4ac0wvSEO25Kg3B6V9lZvGBlHY0RkywYs/oaCkcIHrQTzq6wTYNVSdoQmMuENCiP0A7rAPfwW2k0s2Ek0VQRB4EfWmgLMGDCiu2A2spBv2OVmK1RxKWcoi1Mn3LiThlIm3fchGkYttk74cFYcWUrL+WLu7AmfdoE/RLmEUYY/BlHZOiLMOlojHQFNG0oi1f2W/FlZ/1FA/RhoAvDN++UhfGLXSO8I1CAH7TB5OCGgaFktZr0GG+YZ6644grXbpGnyk9ZRQNxcZeNu9IjTdHiGWT6AH4hzaSLW1ge5Sk30sENWnWRCwIe/uF4SDvmMDnnhNCI0qaJF6YjmkJb/rLxUxmw9R66ky7u2JSdMYM2ymIaYwftlj6H4CxsWATgPBp8GOMdWHM7HotvYEj+pKcnzI808M/Sg7voC2niXQaMMao//BSvWZkJS9/kLBvaA/gQ2rUEPPzBFkEaTS/bcfmmXWvMFi1hvtn3sCyijTAyKldII37gx42xLDRQDnZ+0K7Zdgf/hGHspk9CE3M2TDztA4Gi2SJQiJewFh2hTTg90CfaiCOjsuOmd/wIzzfuKhvu4MpYzS2I/397d/OrWVbVcfypruoXuquNNM2LI9H4Go3/g9E5/wHBkEAYdHBgwhRMx4QBIwJ0YMS/wYDIFDSSIGgCgh2MwSYq2okGiH3N5zz3W7Xq1L23btW9XdX3uWcl59nn7Ne1f3vttffae5/zWDgSbrGl+HQaGXGKge602AQD16T4iqfC5DN1O//iTD7WccTTLr4Yy7gkzxa0kEUtBqkFTzvU8jMvhDFjlDsp3sKjunlGYTL5menn/c2/fPWvPv3yyy/t3v3i87sXb7+w+5XbL+xu335+b0Ufr1q8cOzqmJh55pn9ALcUbBXuaN+hgEhIWITiqXBMiXsehiZzj+s+vnRu/E4AJ//4ETapZ66456ln5YmvsbmlDTO8CHNRGIUrZ5ZZeeLzJ3jSFId/5bkvf3WwauD9B53bGWYrv7ZXkbPivt5FqVq50fY6e+VNDN7Oe3UhSyaHFA4+DMA6t07jnoI10bFiiUerk2GgvlF+6gBPGLnnz+151pFf2MtnPpdOfOWUV+VIx7DzSXNHYaz0UVD41qa1FYVkcmGwNYlUR32IAag8lzwvi/AV4RsfBh1lGkxNJMmKiWOyJw2+DcjwhrsBytEdaZH6J4cTw4lfZasTCsPihGF5MRTFqf6epS3ekslxuxiwHDtxrIosm9gYzKSJTOQY/Y4MMKoNAOmq4si7MvK7qFu94a08elLZDHp1I88WKtzD0D1jw2ofmaFbO/JYXmHA5Sdt8p4fvt271Kn2DE9lhb20/D3zL61n1wyHtUmC3VwDLpkgH9Iltybsjnh5AZqrvskafiJ5R9M/v0d11YVswptMK5+MM5Bgi2ACa/2Un1VVPFg51g8nFuKHW5h4doVX4WfxPOtbnuVX/af8kV+GKOOCLmEo4bkJmjzw6giboz7cForgXZ5n8XSesPie+bl31a7klF6wU8i1Qj0nuwxQfZKf/gk3fVLbkC91dYUrvjwru8mmNMoUP17iIxyrz3wWR77FlR7xq27yZtRZKHT0WL8kG/DWJtLou44b0SEMFUcG+ZEz+cRfvMXLRV154xUPsFCmcdFlYs4oajdRXLiRaTjrn/o+XmEdBvHLnX7xyj9y71J+/hNPflO/yI8fPso7V55w6oiXkyudroB1RK7oaUa/ExXNAciZvLRJ7acsfpdF5QdrekMfI9fwZhTBtPJM6JNrMq9vwplsF4eLV1dU/xTmqszSwGjiJ13yJR9tIS4c8i9veQl3ycOYzWimRxjT5Fp/lD4MGf0MI5f33+hPWMsjkq8riteeL+IqRz8iz3A2NzInMh81vtB9XIsV5qrizQ9y4GXWR71hXP3WfD+I95uv/PlffPq553zlxCe8jab76u3rn8AJKDABzN3tnrpxrHSOB+MpABrOhR7EzEWAvUhaoBF2OxMmJIR/KrzyVg8NqB4ayMttVtUpJf4aa9a9dCe54SK++4TbsyuBxBslbUULb1wrFDqhi5/OqfM2UZWmfLgRf3WzTUwxOetppd3RAX7iWo1ymdAwjljz6kvQqnv5PQ43/vGgTTrep2OnJLWDyZr2429iZiJPYelsFFyyR3G5n/jARf0i4cXnJ25+XO0ljY6HiptbR2aA2g3wVTgrT1Z9pUOUZy/jG2wZo1x54qV6kwvU8/JwgZ/Jf9nENxdWlBLFrh4mlvA00DYhI2+MJ3xqE32BsnWfMo1feZa/uiTnZClc8QGX+czPczIHc+Q5hedZe+sfsGYkw9rKr1UxdVEeGfDumlVIuxmwtlKFXzT56xk/k/cl4iP+yCuZmXmqh2OVBl1Yenav3mS3dCb02gK/XHKkbp7jfeYf79OvcpUxMVXWGndxa5/CufLDi/5mwm4CaeWX7ozItaMS6mVgM4l0lDGs5YPw2FX51aW8LuqGQ/Vh/JNrMgO/3jNrZ4A/nQp7upy8NxaYIMVf/IYRf1f+Z/GNJySue5j2XPrygrUJgVVTWJtEzqMw5JpMmyDYBbbCbsLOMCH38sfjZVJ1Lc/qk3+8k2N6xIQZMdjwol8i/MGaLBu35MNoggGdw0XlS27dT/3hWTqX+0mlKw6cw7d8p2scZRiZpBsX6RHjSeOC8uHcRyrgbPfLTpm8y1+e7it/8nSRe3musS4/E0ljtjLFg737sBbPHMWEsjGTXGsPzxY03EuDuLCSV3LkuUscYcUVvzaAU2n5uc+v/JUNa7JtIcv7obAWX77SWKBIZ3sP1zvHdh1nmeLGB//KWyJd8Ee+8kPx7d5YaA5Cf5DtxkdGXbIOd/MrmMJWfekSczR+UbJcOfyrT2VO/ISLKw/+pRPXlb8wz1zjsg/S0CFOr8DaaZB4Ta7JtgU4O3T+hy55Kq/KVmZ5V271uWzXmMEgtkBvrgQbuDL46Wxzb7qavuOnDehEmEfSwAWv7rme3RdW3JPcGz/88b8dvfe97949/+zTOyJPLekmZMNxu4WW43VHJGXkoQPxA9hTS4LAE2k2nmeMzfCR0RO/BbIvADm+QHB0RIONo0TArC7VA7C2/xxJMynTiDowpUnhnIdqIAJa/lzXFEoTURa/Y0P41KnwpIPKQ3wTa0clDZb81EG4MPHlJw2hsmNksDXRcq6awSU+vk0cG2B1Fgqq+shXPk+KKl+dYKKjwAMudmdMHPBqIqNzm+DoWFav/fN4JL0LkUnkuXvlIHidRjM97MQNG8/eE6CI8ARnE0oDVH2g1V4viJtQ6uAGXsrWgGyi1oQSD1MeTuPpYfzjf6ap3pVFsVplwouJi+OBjDwkjsukh4xQSCZodsC8XxIxpNRZeHUvLLwnL/waNOQficMfjym/8rNr6OVpgy0+DQbtgkovHmPfyjqZ1t/0E5NjeRanssQvb+5lUfWUp3KTG/WBk4kZQ8MqH13kwxJkJwrr5NviBSMvgo0yptyuyxRXOH/lwyKCd/HJYG0cBsJMasi1xQjpLdQwTsNLXs6t63OOEuqPViFN2EwQ6ifxKp1yKiNeLsudMl2e6mZgNTmnDy0OeefSffJAd+iPrRi3A6atwk7e8Aun8j+PK4+JmXLDQb5wwp+ji3ZE6TnPZBspVz0YoPocjPnhmWGKasvLxPakPPFeGYVXF3yQa3Ji8mLMNJbpn9Wf7tMfYc6AZXTQi+k/+aur+oWb/GsrWMFslrkAMH7iS5nyQvJD0tIbVtbpt467WjAsXy6MrarbzVAm+ab75KmfKp+hV1t6vkyqDuXpeeLBnw40puPBZPhLX/rSHazxqT/im4y4tyNjN13/RLAJa3VElSF9FC/8YIPW9cVDWIS1eIwHiypOrMDdOI5v5cpP3gxrCyveMZGHZ2O6/ifeLEuaeIvX+LyoW37qqFwu3BBdbXxn4DM+7DjSKxFeybUxRxpjkA8B9d6vePKEc/zzq0yuuhfuXvmw5EoTDoWJm5+8yCVj35yPkUaPWNia44q2N9d1hJv8mvuSa/nQ2c0j8YNmuYvHJf9UTmXN7I0/5IZe7DipOZNj6AxXcxB91HHI5BdW8FGfiXP5r/1mee5vSTyZgsPdrlCDLdmt0+4LvGFvicKX7n5hjQFluHq+L7Mn6GGwN4n1L83urYA6dzpxmXy710G8OMZAstJnYjjjn1UdjSZujVjeOozyKTlKg0ATCv9DZKDRVkhjuzxLa/A0mDumxVjTOadgKMcEwMTL/99QnsJ1CEaETmGibvWAUkrRy3uW+STaDx7VV93xYxUYz/izmgM3A5qJproxmqSBC4UiTJ0Mcjo/PGa9wp8xIEyadV2VwW8qe/zAGilDG1E+yrfaS3mKT9GYAHhx2uCkM1NIVta128wH3xQqVxvhLf6WiBf8UQdUntWz8nrGl3e/UPLqeAY5YlRTtPpAx2QMFpSpCbPJjT5kMOaH1uXK06Vc1yyn5zCH8cRdnzAopfBNbhwv0abytIrEKDawSutlXlhTptqYLKDKWR4GJvGV/2W48IaBS7n4yg9GZMPxBjKMf4YQrOHL4OaaUEhP1sipiad8yLXJ8cSazMFMPFRZ6hZNGdDPkPxcEd0Ga7KsjekibawO8FYGvk0G3NOD/lTXCrA8lacd8SGNMifuk4fKzK/nR3XxV3n4qF3xazDFF5mAmwUMGNMfdkthLr0JPN4ZrvqwCQ+83cs7GXXf9SB+8QEbOMs72TZZdM6eDmEMkWsr66i6wNlqqjR0twUtk0d5Ivwg4dKQl/JfAi7wo35rmm05w5QrfnrAMz7FJ0cMEWMnXL1jgG96Dy6MKTqSrtRW2ghVN/nKD7k/iQfh4gtzxU9YKL9+pe3JtZV1OIrLpb/0K3yRFwYFfoTJJz7Ij/voJH4Ke1h31lPak56rG3yN/3izI0CX6Kv6LqwZpuTJRJ7s0RHiGE8twJCrjCVlqWd1CRP+/Kq7ONVdHO2nfHLtQtrT8XLl02GO9Hs/lHyKj+gLOpvec2/XiDGqDeVfXpW9JBp6zXN8FHZRt/y46qR+XXYO4aYO6RJ6WV255m/mlFw8G6vUVRpzLYsb7uWH1BOW6XBluiqvePzkJ672C+fwMb5pa4vIZJyB5Ai0sqVVjnJhjQ/tTq6906OO6oOU1zgQL0vA+Jk8De8L3SprkjKSAfJtIwLG7sNav0XGKfzD3PyFPNPV8oRX5F6+cAy3wtbuje//878efeD9L+9eeO7pHWiwt0xXxobR0dF+4lFiBT71FOH3+YY9KVDaWUF+i/9xpWOqfN4prtXyz3/+87tXX311GZwMQp/97GcXwSE0AE1wAApYVvlnPvOZpVGsCnzqU5/afeITn7iz8nVW3cJFPshzQuDeESGft2b1EwIKXPnF3+O//4KUwRSPJv5WAuwkUTB4Fl9+FBPjz3E6E9v8Wdo+lenFXvXScWzXR8pUljwqs7DH5eJB+Xh2qZcrfigJk2NtSPkyTFywo2zUyWTGgAufzjHjXz6RvCmR2rcylIO0DxLOz7My8WcA8oIpRaQ9KCaTnUj7eJlQ28AcXxSTyVdKSNzauDLVG/Vcfhdxa9NkIAzUSxgqjBvB1kUefVnmtddeWwaCcFEPdTKZMcGnyLzoyQ//jCZloMp0L6wr/8qNH+lMWpVloLFjZEIDa/wYDCaZOJJrOyzywoNrkrIqZ5arTJc2K3yme9R7ZZiMaHv1qW255C6jTf5WWTuWYYfMn+Y5qikewhudYxCQl8mEYxEm78ohV+qA/8pZ14X/9IOtdpAfTA208LXbbKdc2+OfURZe4huErIx6UV3dlI235Bof5X0apvEYtvK9DMLnrGdtO7EmTwx9dWaUfPGLX1wWvvhHdKIJkTo5oul9CAat/NVJvd3Dc2Ja+rUrLkykU26XL0vRI457kXd6G+aR9rVzaCELznQavuQTqSPCh3JgeR6eSn9etzY7qa2EuQrLpastWtGP6mg30qIdOYtmnRgj/urAQo38GCrJVeVLJ//KrK7qvm4TbYoH/Uh/8qK6NvdMh5D5yGKQnSw7WuTZxJ1Lt1Uf+aPKdF+Z5XNRV71mnvMZH9pbnxWHG6lT4yI58q6gXWljVQRrdcoAJNewli+/+kn1rN7Sd48f9z2Ta30CzvCWllFmPsMw84wvMhAZM4zLdkMZxcYK4zasI+WgypFPuE+9WHjpLuKqg3Jggaqr8pSjnkgcC0n6MXyNTcYoxn/pYM34JL8Wd41PvpiJ6HF5yUe+ylG3WZfqX509z7aHNb4sHhov+oiEcWQetcSH3Sy74ua5dAcZ4B9pw/CtjoVx4yW/yWd+F3GVHQby8YySb3Or5iLmyvQIGddedqHhrF7GJB9iUr/SxldYh2f+a3dp4TkekcOMHpEfPFRRhuts738G4mUDeX8pj+ajMQBqIk1JUoYpYjnG+xQMwAY6t/vzcCA/eSXg5Zsw6lhWt0zAKQvHVqxkURjiEmDCQEh82c2gY9XC4Ip8Dc3ggicdxooNBUlRWTmweyHM+0UmV+qN5B0v3OqtrgQKv+4fZzviU7n4qaPAiTLgR4lTOBFlJsxgYOJjNy5K4Rv47C7UOeQvb/nOuvGrvviYYYxWL0wb6HVOZ6mthJ5EVtUZZzqsASDShg0o4S5MuWFf3MtyZ761sfK657riwT0erTa5kMFLuImzFXdxYE4OXUjdDBaUkzpboer9MeH4SK7k5b72iAeYI3kqx+Rc37DNznA4ici3bXYvqlsBXpOy6nczrLaNrxl2mfeVA1NE5tQTX0i4CUOr5vCjk+gBR5TcSxvO0kgLbxNog4MvmFkwQeoqvjKUVduGtTB+6Tu7VmTZKpx7xnBfE1oyHD90EiPY5Abu0cRYfapz4bm1s+ez4hX/YV11VD+yqX7qj8LAPV1vooCsSgqjQ/rfE/7kuImlyYZ8rdBrIwsfdC0/ac9D4hpvtCVsrfjK37ERRtI0isqPLDsOxRjty52FqWP4yTu83b/dVJ0rU3nu8ycLnskhfuxwIIY1Eu5oG1lD3O5NhLQFfLQfHULOZllLouMfZcovDKbO5g9fE0dtSFeTc2PsmiymkGlHzvWl9JD89bPGkdJVV3y9HZjL11U5lbv2D2N1xbMxDtnhIPswZJAyUNDEmm5FsKZr7N64yGllVzflVAY/fPFLx5BfWNPR5NrcRBsz+tekDxkXnX4xz1ljK77+i+q/6zzwh3LX4Rd5Ls/aHobhAAPhnpPr+NAnjVMdi51YM6bU09wM1vSH1yToIuWor7xhj2CL4Fv41Gd2ThzFJdfa0X/t2Q1fEyPI3I9cM84YZhF+p5xXt8K5yp6uuofPjPeo9/I/qdxkTJh745wLwc/81TzMIodPxTvJgxjhMCVfc3yqHrXjEvmUn1t7g6iKQ+HYQDJBvrnvlI7OBd5dk+le08kTsBTuCrwAjKmeT+HniXgTQAKiAZCOmDB6xjO/6sZP3OJX1/MAvhRw/DMxIfBWIAwKhDy8O5fN6NHYSAei2K0O4MvOhXsdzllYg4rJC5KfQYExpSOaPPrMMMFSZkaXuCk59cFbAln9hHe/ZP4YfvBRmRN/vKOJoWd19IdicDEAUkwUs8uRSM/CUhAwnbtm5RkG6iy+Z0ROKB+Y94eYJjpzoKX8TFSlMUhZGWOUMSzKH9/lWx2mzC0RT6hf/o/qpmzUS/vCsbpxu8dL7T8VtXCTdgMavk0YyB7ZpZA8IzuVZE9aZ4SV5zgQIyvZlr6658YDlx+sTVYZ/ybtlaMMcdRH+5FnfcXKmAEgrMNJXcTnyrf83ddv89cu7i+Lyku/dF851SE8PJMv/MQrrNVHWtgy+MkbQ5EekNaRJbIIA4sF2iEMhFdX+Sv7pH7M3wBroLU7qP3wMndSpIcxnWEHw+o6w9+ONQpjeaFcPFSnJWD1gz/XZVPlyzfetO18Tu+TU/VyFJOf/mxyA6tWK6Wz6GKFGNllsFACd8bVw9RB/o7ierePXtKmdlKmcUSuTWJMbCxkeY9OOQhfMFXHsM2v9q7OD8PXkvkpP+F5Vn7iFG+WH69lrR0c5072YUGe6WkyJw/yaELvmJC2sSggPh0/eRDXszLWsi0MrnYvvP9ElxgD6JGps8m1dqS7Ha+3I9vJCjyri7zShdVNGH+EB/cuvFwGVU95kkv1DzN+hfNLlmc4PGBtAi4uHeIPWMVtXJQPLKzG6/+wNqmEhZ3S6qw+4kYwSPaqL/k1YTcPMf7SU7BWVkSm6Q982bGym2KxVjkz/+IrpzqFu/KKKx/3rvAo7aO68mqOUZnljZfKlr/w3OqkLu4t1Aony+QOaQNy6GgYrJ10EN9CKhl0r32qT/lXLj5cdIbxgD5yHFf++lCLOcqSHz1i/GAkkGtGvzaQv7xhWftVL3UP84Xp45948hgeM/wi95Utj+rKL3/lzXvxLAQa62HK8DSfs5gKBwvX3sMzHqofrBnk9Gn1fRC/t3bHR+WKuB+mCJojc8uLRbu+0eBFozUo+/eOSr3vQIFeXJWqkTGW/91UT/aOMBBKFJ+EexL/wtRBeALEPQ/gcKjuXGlqcGUxcBxpsStEqYijwa28txoUT4TCqqL0+NcRCQSFpDMSEJ1CWn/yZcWOMBlc+MVv9VIHdZKfS3hxlImXFEY8PA5Xua544OKPHzdSD88UAkVDwVC6FDNFRPkbKJ3xN1DaodNhHHlzZMUqhDzlU5mVWxl1OoO2iY08Jg/iwQzODFoTR0dgDALrCTv+4K0MgxjSBpXtWd7JXLK2RLzAjzxdypR3PFRObb6uV7gUbuJuNcrEAsbeS4KxiYi+BCuyiAy+ZNHgyUiCiXyUUX3dw2RiYDJql84AYGUoHpNVz1aSrKpbwaP8YN1OlfD4jX/1RcrjFw/8itO9tGsZWBI/5E9l4Rvu8p18CHcJxwOqXdyrl8mkQU3fNijq71Zpkx+DgMsg2UKKSY6dDnHkj9yHMT+8uLSVlUf6xyRpHnuSThxt7ugkXaLv6F/tVImDd/HkX508F8adeLqfz5PHJdEFf6ofLOFOvugwZU5dJl68k1NYC6dPTTbswFtkkp5cNwEh1z7sI71FJ3JXu8a6sOrYPQPA5NFRYEeftdskmBnE6SW6DNYwt9AgDxeMJyljlp0chf+M+6j3lS3P6rTOS7kuvIjvXtz48OxeGHlWP+F0CdnWz5M/cRigSBztoB0du2t3WDnxwnVJl0s3mbBbQPBxgHRSfIsHa2Mk3UGf2XFxTLc5gbj4lm+yXT3WWBQvXirnIq5yXeou37CtnvxQbmUJTybwTYYsINmp0b+9B0S/woi8m3DTuYhRitqxhIW6odoSP67aQHrjK92krUxYI/k35tkJ9B9Oxlz6yU4VGcdvuLp3KYuhhoS51FN9Jj/dr/tF5T+sWznSqSP+kwdh8RbPyk2uufqq47CMbJN3Mg1T8od/WLmQ58ZHO9L0tzxqz+4rtza12wdrcm2RbFIYkWmLPuSa/tb2LQiXn7iV1X345x+f85mfeGu/ycfD3IcfvlzRuk1nGNxcyBzLIpLFbzJNt9In8LG7pA3V32I1LE7jnT9Sr1tv+VNYwkfwXWwi/W2JtGdyD8CxsbQkvbuPtN9vkqFEe0Uo/gTN/bqSx9m8IxwdFyjxqEPolACNNJ4r0ijF12CzvjVgDV5DFG/6zzxNMk1STLwRo8jLfFZbpBU3tzydiTdo62xW4awgU4TxZuJIKeJPffhPXmf5ypxh1fWd5sZjblh4Dh8Dr6MocHGEhus4iwHXCgOsKDy7ElyK2oAN86CGutcAABnPSURBVI4cho0dEquX5MKxga9+9av3GUdWk3VQeRgAfIVHXvJIoYUjPrVF/NdWhecKPy2sOA/ryrPypY2H6lp+67LX4Z5NjlvR7iy/gU5aeNlBQpRVK7fq7cVtODEgyTaSRjuaLDIA9ElHM6xEGsi1awRnx/a0m3aGtfaD1cR68ryW++qX7Mh7Yj3vK/dRXXwoz9Vkorzy77lBOP7yhxVjEL8mHnCko0zSDbpkFGZNfPgpl/4gz4xSg8LMlzElL3Jt15ohauK+3sWoT2g3uoRhJG+8NOnB58R4Xa/ZFtVp7UpzmTTLxJvndRnqkAykO+DEuPTMSGpVlxzDjHya9NC7JoTw0h5k0Q4pXdA7b5XHKIK1dPL0GWmTm2mIaidGFle/sgtIl5CJ8IzHeC7/NW6XKb/lPfHMb+1OnN3HZ/HiN3+TNcYJgi38lGPnmAzTITATnz6Ao/Yw0bFwAK95bFmZFhd7j4sxy4hl+MsvMn4bGxlH+hUDl5GmT1WH4nL5RergubrkX7zqNv0vch/uufJS9rr8yaM4M75ndSVPLrJLzmFFd5Bh8w/4Ih8YSIeIQ087FUEXVC5dJh1db1wly2TabsY0jmBqDDY2mKgzHPQv7Yjn+JbvvF8YGT/qM+tdXFHm/UjyyLczv+pbZhPX+MktTsY//Qsj+puudPzLXIQhSt4R3OlebUIX0x36BazplXgRJp0jkmSMAeCYu/QR3si1tmqRxakh98Loj3RI+ZY2d12X/E9y19icFOdh/OR3Gl/lM/HPjwsrhjdsyKJ5AtmDlzk1vU2H6PsWQOBpvtyrA/KQFj4IH7eYNnt7afFb7u8MU7aODFrHA5dkxd2ri7c6j7d87nt3dHOxky4btD1nb/9vwACasJ5F4lbP3OL3DGxXDZqb32wMYTqQQVjD6SDeo7CCw+ApT2WI51kDSmfC8slPfnJRVJSOiQzBQJTYnDTG4yG5tRs8YFq9uSYXVhS4lJZP+lJQMKb4rQwbCCgUSozyNviGmY5mR88qhLYxEHiXq3KUYfBw3Eh7GQRMRk3Ya++FodXPbM9V0GN5vIzywwjDVnSt3viCmUGWoe9DJlaFEbyt5NryNrExUDqe5YXRjALxKDI7fCZG2odC014RrK2I+TKdiaTJEXl/kFI9rb6n+VfeZbmVk3tavqeF8w9vSt27PxZHGEhWyUy4e7eAfjDB8d6hiSGMvL9i9458In3GCiSsrT42eBvMI3rQcSPHKQ3a2s2Rm3RL+ciLrJ/Ge/k9afck/vi59Gcy2nNYww5ujqfQBV7uZ7S3Yqvudk29KOzoksGXvtEX6JtIHOm45NqkRn6R8hyD0q4m7LCm99sNFA+PcJ68Pkjuy/9xuhPneb/mofrU/+lgOpRxCCPGp5fd6YDIBNEE3GIXfB1PYtzQuRFsybUdVm1qUtpOVHGMmT5KoC/Jp0Wbwtfuuh7r5xn/rLAZ72HvL5ov2Qlrrp1Sxry5Drl0jNl4GMHMqQDHbekNC44Wo4yTkTh0j4UV7WmlfhpH4pFjHyjSrrB2/L+FsfI5r3tRDM5bzoz3oDJPC4e3ix6lq415jCJfFuxUROXwN88gu/o8w8pcxG5mZJ5iZ87YatGAvrcQMIlx5Bid9NoM5vpVpI26TuO7uFfRTW+TL3ML/duClHmFuZ85yOc+97nFeGJAmYM4ckjf0uXppOp+7zmyfK+ZS1ASGlU3qfOyrNVsisTkocEzBePceCtSgBUeJXjyXIMuTH6oxixdncmzgZYisUVKqUgjbbw2MCrD6oAOwSpWXh0znj0fMlW/2jCX4ocThaMTmJDAz+Br1Yuh4/0CF39GKVeHahJoAmpr3AuXDCQEY5g7nqdjUUBWe01wahf5XAeCtbrCy+TZZZLtWV8xgMKTYtJfTDDFp7xhpY+550fpG2i932UFuYUKRn9YU2qOeZkY6T/y0P7aRB6uQyd1NEkx+MG/3QoTE3gzfOBqgigcfmSen4FDu8DLBxhgbZANQ3qHMcAwENdRURd/BO+pv6RTxiHQlB2yiMggnK2A0yfkT/3tPNMNJt8mNSaYjCZYaAMYW6GHMz+fOXY0104ruU2fO4JjpZg+sYPBkGX44wW2ypReGn7y4++a/F41/PE++Q8nWJi0I4su4pig0710CFll/DuODgMLKbBp0s6PXifXPsTgOXk1UWcIaRsTVkdtrB6veblqWJ6X39lP1VkfZ1i6hzVZcyrAAhf5Js/klXyLw23SDVeXOBYPHWOfusERsxZq7azS2cqSRnvhxeX5OpA+3bFN4yGs6G16mTzD2Q4H+YY1+UbmgMZSOlyYBS9z0/QHDMk+2TZP1H4WtLjyUY442pYu44dyl4cD/TEv079hZX5Md1s4sfBCN5gXWnyFj4VdcjmJTrrXZ4Zeo3sAEZgAonStXBnQdGDhLpTA2bpvxTa/ICOM8pOWmzBWDv8GBGkKdx8P7ilyQl2c8lIeiiduZXGj8q3c/A/NnfUME35hwo9it2JGcXg2efzyl7+8HLVjSLoYShSQ43e1kXZyBMHkMmIUyctZeAM65dX7B5Vf3EN2YXOSvJlMO0tt0KWcrAD7xPz8QpcJjyMClFUyLz99inGE9CNKjHH0sY99bPlPA30C1jCPtB3c6xf5H6pLtumFsLcabjJuYsNI8r4Fg77jMu2CagdYw0laOPfOAez1EcaRVWKrxZ4NKtoATb0G73X7X0W81cMFD1e6xD1/z/mRPRMWAy/jyCKL1XP3sGz3zWolOYaftOTToltY6xPawCTSai9jX3taYaZblBtVfjwUhr+rTOHCnXXxnD6wGm53iNFovLXqblcatmQPmeh84QtfWAxMuMpLexjDxXGlM6zIW1Wmn0ycWlmHaW19lTE9L+/Jkvhhb5LtKJbdUnrDsURzIDtC5BeZyPuEtIl4ae186AfwS64ZQtrMO3R0h4WWDFjpxC3Pyl8yPOAf9ayudCpsLKhaiDEO2r2z2AIbxPDkB2u6ggzT44wkOEdkWJtpO/qDzoG1PiQenZ3OT1/P9i+fQ3VhDju6BEYwYBQxSGFv8Tu9bZ4BQ3inDzYD6VgypmImiFZLzksAXROA6xCFJZh1lhR4A0Lh4rsn4BrRCsK6DAqGn3jlI1/3yhZW+XW6+Dg0dyrbcIJLxqX6uwyKLtQqpRdEDQhWKRlGjCHXaUTZO97lXQwrvq2si68MvCg7Pk7L51D8w5aL1J3cwcmFHBmCMUzmOy5W2l2nESPIcSXHTA0CVtkj5SkrStZ7PlS3eld3z2TQLgdyJKP+4L2vdj1N0DvueBI2dBCj1qq6TxzPI0vKSMekV/ihqW9Oyved7lc94pPOJUv1X+H1aZibgBhskRXyJit2LKwMI7JuBf4ssqLpOJ3VXv1jkjyVpU0aG4TjJb7i8yrLvfq41LV6kCfP/JvYhE36PCOJv8lNq+3FW7v+LNIOhl3+PulenORa+cq9DhTuXKTu5IwcJotwIfeOMzYXMtk2sTyL9AnvF9HZdkyi2tlz99cJ7/ptmNs9auff7pL+zCBlhIYR4/QssjjrSKpjYt4rm6ScqbeUr01R/vW5me5Q7sM5HOiO3i0l6xYSnWgxRtoIsQBjsYrsGvukI5+bgXQsEQHpkWImtAyTdSf2LK6tUasnBDvB449S5IwbE0AWK6EkkOII1zkMtqWZ6dwTaFcDpDLiRZq1cPfMjZ/SlG5h7kB/YFLbVEV+YQCX2oAfQ6n3hkwivVyqwxgMxJtkAur4nXazwm4lwsQ946hypNFm1wFvdVXPibm6wyKcC7MKRvEwcPSZPsIwP58c3uJYdZTWYGvV1yDAX7tpR30urJWn3OtE6uwKf3i4hw0sDJbtsDH6TWzgTmfVJvCi5/QD6ezKmdQ4TtcAIQ7MkXxr38qXDnm+qgSPSD3q++ldYeoNh+rZThr8vKNFD2gDX6qCMQMpw7S86Q4ybEyh++kQk3YLNfKuLZXR+FGZcJ58zjYs/6vohmv1V09X+iP5KtxiFqyNqyY2xlV4rw1/+NiJM76SbzK9No6UAevkeuJ7FbE8L89TdpIr+Lpggdz72i0MYd3XA8l1rxVUHlk1NkqrP3g/1K6f9OWlTP1Dn4K559q2fA7dTXeoO3zDQ70ZOsY5+Pjogjmj8BYPZ5tZdKRH5NdCrZ0PJF9xybb2oGvQLFv4daCpx9WZzoaJd8NhLdyClh0jO9M+UuRUkV29xr+lja4DWA+qYwIIEORsrjOJVmMpAGC6xKMECJyjQbZGbeVLtxY88QFu4g18zxS2uATcVr8rIVYupZHiIOyuKOFXjvsGcLzMspWDxHEvvxRfeR2aW/3UGR5h6B7enuEVTuIL05audoXsHFJQ3ieITDSdofZ1FJ3J9rVnk3h5yyusy1953ZfPIbowROoLAxeijPQb2CSPsHMsEWYUE+Vve7uXgsUT3zsZdub0EZNHuxoGYCTtHGRrX2XBu/Jr/yXRgf0kV9XVM9yqP0zg5UMj7k3gHQ/1IQdfA4QhgpFJDD1nZU37OOpF9yHtUVm1M7dyxXFf+UuiK/pT/WBCH6hTdXXPH8b8XOGiunS63SCTdXrBhJ1RSrZNKMkrzA3MdkG5Jp4GYrpEfiahyTDc3fOXjluYexd++F1lUo+wVWeypF6oegrnP3GgH/qSIqwdZ7R7x0jSRuLDlQ7xPiQ9Ik07rMpSjnjxUHvmXmVcH8T7rDMM0MRfOLzJtQUqxo55EFl2ysJHG6y2w1A8R7zoEFjrO477Sqct5OtKZ8tbmXAWjjzX7ovHAf4kx+qvrq5kDT7mgHY27Sgb84yNPuTgmKPTLNIhWFuY9f6c/g9zeEsvjrzk67400tXOlRn2Bwj1nSqFQx7wIK9ksVNEdAPMfcjBYi3XxgiSfpHdMrjubsIDByt8Vp1MigkTcGfH9uxLIj75zEAi8OLV0a3WmmQ7n+6dFg0jT5Nq56dNWJzb1VgG1c5CGyg1CjLgMqy8N+CIgIk6HvGhfPGUyc9A4Xy71R0dxyRHnoVfh7aFS9jVDrChtJH7iZ/7OcnwboGO48iGHQ9tgbSbI0d2m4TD1KUNylN5lbkkuiY/6rxWvjChsLkIVkg8hqiz6e4pfvFcsIa7/mBVzBfAnNNG8tF/uLWXeFF+nuPlkNuC3CF1dD8vGOVP7hlHLoa/ozNw6/0N4SY2sDYwSCtcW3DTHZW37lt4yG+2x8LcFfsJw2Q19skTXFzIsyts1N9zCyw+V01WHcEzYTfowpku95EYRzjocuXVR+TtHvGvLO6UbeH8KhMPV1nO4YZ/dVKX5Ew9w1ccBAf1Jscm7iaIxk0LMQx/k3fvZshDnt6fM7G3si5/8slfHp7zWzI//uF36KSOMAr76lv/DZvkTlwTcBNxWPvQiLlGR7+0h4m9Y6Im7mEIa2VMGZVn+VeuOLNN8j80N7y5aLYBjBAc6GGXeD40gnzUyNgoHNZ2+Z2o0GYuebUgWTsuCU8YD8Wln2a7FPfQXDIYzuQuma6ewvgl33BBdLEwaexW351plPI+9+oen7ivKqd4EEigABURxrboT0myTKKLLy1KQRBuX8vwWUHK27+g2y0iwL5+Z2XACiMi/MIJLUFXNmJkfe1rX1v8fCKT0q8zyafOJq4z2MrzJRmrZ6xiK2gMsnXdlswP8Af22qOOcZYiELe2CgrprN7A2uquSQ2CoUlNK+v85K3Nawd58at8mNdW5X+ILgzI66x3uOZWb8+ucHGsgLK3+q4PCIOnlV5hMz08S28CLw9l1gfwwa+8K/MQ3XBR5+SMH/njwhDBp3tKn/6hG+iVsLKb4UMaxZPO/SwjDPl1KRt57r54V81VB1hVD5i6Jn7i5Ceeq3RcF9wahBlKFqhgXTwy7QMxGUNwou+T5cpXbrpLWqTs/JTjubCrhnf8qufUHerT2CcM5Qcb2FokVHcYuGDpOKmFK6vuYWgxoK9/VR6s5SvP4sF04lm5pTlEF37JDxxcMHFF835ibVy0eNg7uvIh576g1nFzeYRv93DWfuLPMuEt/1lePBySW/3CXZ/nZyxrATfZTAYZpR//+MeXI4v1C3JOrs1JovAMc/l2X17FjY+eD92FQ7iqKzlEzROEudLbwqTRLrDSNvcZSHe7yZLXtfhJYAlwZKXExA1ICV3h4ptAJ7jSJJTuvQDmE7qOEhFqk0DnzSkDisRZdWEMGp/xbqA0QXfMRb5ehrR7pCznemejKqNnnz71j+yMLtuyyrPS0J/viXsdOoY6hkn4nFRvfif5S4McDzBJr635zQ7kOcVTPtxZdv5Lhgf8U72585pVXmMB1/AzOTdp5xd+uTOP4vMTvi6r55nm0O/VOSzCpTqHRzrJs0mjs9UTf7gKQ+K6D+ueC8t/lrH2K+yqueGF7zCYfvnzSz7d588NV/52ne3c0eNwlMZVeywJhyz3XJ6zXSqjtp48lO4quuqxrqfnKXfVFbYoDGccu3d254yhSJhxdsomP8+zvPyU0bVkcOA/YRD+Z1VXHDgh9ybmzVf4hSl3kriR+2R3+vGf8Qo7RLd6wiHiR06j4sDbvXmn950Zn1F4ey6euDNtcfPrufizzMIO1Z3YqGNyusZGWPi4n/J6t4VORemusJ8a5YoHUMAuwAGREGVtVrXCAIko5OLwS4kLA7BJtcv5fmcdKRd525myCoMyskqrM/icsZUyn9MU7ryv1THH8nQagy5elMkQ+8pXvrL8D4Eje8gRBOXXGWfDLxGuwQ98XCfRaf4z7sRv+ndfR/Ncfif5Ff+Q3VnveX9anddxHlZhJ9fyX+d1WpmH6p/snYbFDBfnLLlex53P814+PeceEr7qdFK98std13nKpTCyuZbPddoZPsPmfXiv/dblX8XnWf/T6qneE9vTcFgvYk081nlUVvmu+ZhpD+0eFmGYe1Yd13E8m4ecl8QPZ/fr/M6bzyHEm3WfuFS3Gc7P82nj4zpu8adbvtPvpHQz3qHcq+e6rmf18+JyJ+b3GUim/ydPLQ8FuvvrwYhwRYwfRouODTD3DBMAB6S4895zho7/t/CVIp+5dLTCdmmNA/zS2aGa+VgNs2rg6EvGF+PIS6hcg4A0nZP0rXzvObXl7UtUzgN7sR3v8bMUsv1sCGwIbAhsCGwIbAhsCGwIbAhsCDwQgfsMpAemOMAIjBYGkh0bRoX3hpxDzMAQNo9LgGAaVeIJdyEGkpfMvcSYkeWDCwwvfwZmN8jXMsSzw5TBJK1yC7MrJE9fy/vGN76xlNmxP8aSY4AMKUdn7Do5ivfRj370znsF+MowWxjbfjYENgQ2BDYENgQ2BDYENgQ2BDYEzkRgM5COP8rAeGH0MChsIWfY8HPviqbBxC8DJ2OEweXlRc+MJB9b8HlML+366p3dIF/h8blSX+SZecvLZ0lfeeWV5at04vuzNsZS+We4OU7n/2V6edIRvf5/IF4ZUPKcZRS2uRsCGwIbAhsCGwIbAhsCGwIbAhsC9yKwGUjHeHix1scU7Mr42pB3hRgXjBIGhisDioHiv0b8P4BdJ0fi7ARFxfdsx8cfY9o5sjNl94gxxoDyOdj+40Vc+TOufKnExwKUY+dJHj7oEGX0+CTkhz/84eWFYHxmQNmFssOEj402BDYENgQ2BDYENgQ2BDYENgQ2BM6PwI1/eP2No197/6/ubj/79G53tH//6KkbR7vdkS/H8DDJ9pWSG7tjnyX34383WaLcSXh080q+wMTg6D+HHGnzQQW7OIyYaWQwWOzEMGR8hc7nvO3sMHJ8CpqhlEFVEzCKfGnO+0KMqf5gVjn+h8R/7Pi/Je8VMYT4+9Jdxo5n/7fk/0sYVuIwfsRhxHlnyUcgJqkPHhF+p8E24233GwIbAhsCGwIbAhsCGwIbAhsCGwL3IrDtIB3/90efHAYP46IvtTAuPLsYLRke3jFiQLXLNA0Rx+J618hnt+30MLgYWJ6/+c1v7b71rW8u7xbZreqT3PKvDHGVLV87W0hZLgYSf3HEt2Pk2YU/u1DC0GYcLTBsPxsCGwIbAhsCGwIbAhsCGwIbAudC4NZ+p2gf9/4v2N1/ROteH099/e3ekHOV/g6JZJeGoZFRFFsZGZ4zNDKQPDNEXMiGzdGy67bbfe9739299tprux/84J92v/HBD+4+8mcfWXaXxHvxxdu7W7f2/xvw5ptv7n75y18saYXd9P8Nx1/NWzI9/mhDfDGA+qPBDLYMKfy4V5eO1+VX3PLc3A2BDYENgQ2BDYENgQ2BDYENgQ2BkxG4devmU8sBuvuDbxwfr8sAOun0nDhSHhtHV9RGYkgghgQjg7HEjztJeHGLvw9vh8nBw6PdG2/8ZPd3f/s3ux+9/uPdv7z++u5P/+SP72Tz1O6t3f8d/6ndzd1bu6O3/LvvfreHsfrWYmjtj8a9Zefq+PPhlctlBDHGGGftHCmAP8JnbukWj+1nQ2BDYENgQ2BDYENgQ2BDYENgQ+BMBG49+/St3Y1jA6d3+o/49GCKvsy37zUO7uZ6Ra2iuxW4xxBicJxGdzHZx5jPd+DaHe1efs9Luz/6wz/Y/efP/nv3ruee2/30jZ/svv+P39099/zt3es/+uHu5//7P7vbz79r99u/9Zu7D7zvfbv9O19QB/SN3VOOyh3vWtk9WiO855HvPn78TmMpv83dENgQ2BDYENgQ2BDYENgQ2BDYEDg/ArdMzu9O7u8mbOp9dMRY8hTdO10/PaT418ndo/H7v/t7y8cXfv6LX+z+/jvf2f3117++e/O/frZ76aX37L797W/v/uPff7r7nd/89d2HPvSh5U9dn33mmd3RkV2ho71xZCfr+J2n64TeVtcNgQ2BDYENgQ2BDYENgQ2BDYEnjcD/AxfhY1MiedVUAAAAAElFTkSuQmCC />
  1.True
  2.False"

Question 4

Which of the following describes how a soap cleans?
  1.The fatty acids react with grease molecules to form water soluble compounds that are subsequently washed away.
  2.The fatty acids form micelles which encapsulate grease molecules. These micelles are soluble in water and consequently washed away.
  3.The fatty acids react with grease molecules to generate new compounds that can form micelles in water. These micelles are soluble in water and consequently washed away.
  4.All of these statements accurately describe how soap works.
  5.None of these statements accurately describe how soap works.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

cdmart10

  • Sr. Member
  • ****
  • Posts: 332
Answer to Question 1

3

Answer to Question 2



Answer to Question 3

2

Answer to Question 4

2




wenmo

  • Member
  • Posts: 540
Reply 2 on: Aug 23, 2018
YES! Correct, THANKS for helping me on my review


rleezy04

  • Member
  • Posts: 322
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Children of people with alcoholism are more inclined to drink alcohol or use hard drugs. In fact, they are 400 times more likely to use hard drugs than those who do not have a family history of alcohol addiction.

Did you know?

The Romans did not use numerals to indicate fractions but instead used words to indicate parts of a whole.

Did you know?

Medication errors are three times higher among children and infants than with adults.

Did you know?

Drugs are in development that may cure asthma and hay fever once and for all. They target leukotrienes, which are known to cause tightening of the air passages in the lungs and increase mucus productions in nasal passages.

Did you know?

Bisphosphonates were first developed in the nineteenth century. They were first investigated for use in disorders of bone metabolism in the 1960s. They are now used clinically for the treatment of osteoporosis, Paget's disease, bone metastasis, multiple myeloma, and other conditions that feature bone fragility.

For a complete list of videos, visit our video library