This topic contains a solution. Click here to go to the answer

Author Question: What forces are responsible for lipid bilayer and micelle formation? 1.covalent bonding and ... (Read 84 times)

wenmo

  • Hero Member
  • *****
  • Posts: 540
What forces are responsible for lipid bilayer and micelle formation?
  1.covalent bonding and electrostatic interactions
  2.hydrophobic effects and hydrogen bonding
  3.electrostatic interactions and hydrophobic effects
  4.electrostatic interactions and fluid mosaics
  5.hydrophobic effects and fluid mosaics

Question 2

The following molecule would be expected to form micelles.
 
Question 3

0ECBGsRsqQNqs6MJasuqP2ZrLCCGfoEE2Kl7UJG4ZRXNWR2nM2rWw8pav4Ck/ZtBKmA9MI+2Av5oO4lIPBljbLOEUbop2FhrTBjLShT+/UOe/KW3FEA+4YbMLSd3gwfDOwgy2CE22Abau0Zx7O+9GW6H/0AVbMoI22Tvph2qRHmVTHKh/fhCM8RnH07Y5N/qn+RzK+AAAgAElEQVRMxA+N4pGO2jl48PBNW+YBd8rDtgkmNhkYZLZl0NdhZNgWBwOXZdh2lE6li52llXFAYwH5Qh/CGgIcK79cyiGsiQ9mMJ60BzRbYE1dUWbwwKht8g6Nagdy51vvHmEH/ikO+ZOX4pO+vkUDNg9lQRvHwhEr2zDKbPWiHcnQT8EaZo3yo9FAWx/ipHZCnqQrP94HM6IrDEP6PBiEBOijXTO+0eeYT2B+eDDUAe0CHoE5hDbA+I0BD+jaFi2kj79oCNtL+O4JNvkXYk1+PKTXrGxgA760Z9oH4yJMMqvaMtCBhgjmDRzQzLF9UXWpcLLJS/WOTXwe5Y9NXMUPy8T4zIOhfVIWtBYwlginzI0wt9LgMZZjuDWWsYO5lHFbhvwxykvu2KJH79jCnHeVQf76DsPgN5hRufAnDmMi4562r9GG0DzDvIeG8rJrBRzQsoN1llFX2wZrykb6wpR8w4e0CYcRTZQlbNfMD7Q7cERIRYvIXMJYx3yI0TlH8AVr2jX8L/kqP8JBC+njpnYHvaJTYRQH920ZwpGeyhiGxQ2j/MAYg825QRaywJd5BuFIu1c8kJlretnVQ19lDqL9SHujMNjQQF7Kj28Z+ek7pJNy44+ww4OB14FedgfBLzEvgjXv9ENoR2ClfsCacY76F4bKB1u4kCf58C2cRaNoDuNl3xMOWI0fP87a+IE3EsmZoTOqVcuWy+csT+HZXFdPOxS/mZRK8en+bREwdswYZ+44lwTBhFGHzjaULBGt8C2wZEOTgAzpkxvhwrCEUSWE4Qd7Hyws7uRB2upE+m6WZ1jpog2bdDC8q6PhpgGBtFgJo/ExyDLJsheUSwK0WgPjiHDEDV4wa0yCrNZkTRaH0D/r16wMCi869U2HYHJnEmJw0iFg1LD84CzMgJhaJinii06lgR3iQhjhk6UF95BexSMNuYdhwgkbd4WXLRpgDBDsWGFlCwx1gJvqiLQZiNgmANYwaqQt5kPpZG3RhHsWO9xCf4UJaVNbg3FlUKLfwhTAuHJ2BEZHBvrxg7kHc8IwWdEeyIdHGCgPuSlvpYWtsOF7GJ530ReWDRoxuBFGjzua+SofzAIrkDBp5EM5FI9wtGsEPFZY2VpBO9NES57Kj7TVX5Sn8gnDyI3wmKwtf2wmWs52EQZmizGSPsgkK4OwAcNAf2MigCbolZBEOOKHGOIm3PUuOvSNTVoY4ac0wvSEO25Kg3B6V9lZvGBlHY0RkywYs/oaCkcIHrQTzq6wTYNVSdoQmMuENCiP0A7rAPfwW2k0s2Ek0VQRB4EfWmgLMGDCiu2A2spBv2OVmK1RxKWcoi1Mn3LiThlIm3fchGkYttk74cFYcWUrL+WLu7AmfdoE/RLmEUYY/BlHZOiLMOlojHQFNG0oi1f2W/FlZ/1FA/RhoAvDN++UhfGLXSO8I1CAH7TB5OCGgaFktZr0GG+YZ6644grXbpGnyk9ZRQNxcZeNu9IjTdHiGWT6AH4hzaSLW1ge5Sk30sENWnWRCwIe/uF4SDvmMDnnhNCI0qaJF6YjmkJb/rLxUxmw9R66ky7u2JSdMYM2ymIaYwftlj6H4CxsWATgPBp8GOMdWHM7HotvYEj+pKcnzI808M/Sg7voC2niXQaMMao//BSvWZkJS9/kLBvaA/gQ2rUEPPzBFkEaTS/bcfmmXWvMFi1hvtn3sCyijTAyKldII37gx42xLDRQDnZ+0K7Zdgf/hGHspk9CE3M2TDztA4Gi2SJQiJewFh2hTTg90CfaiCOjsuOmd/wIzzfuKhvu4MpYzS2I/397d/OrWVbVcfypruoXuquNNM2LI9H4Go3/g9E5/wHBkEAYdHBgwhRMx4QBIwJ0YMS/wYDIFDSSIGgCgh2MwSYq2okGiH3N5zz3W7Xq1L23btW9XdX3uWcl59nn7Ne1f3vttffae5/zWDgSbrGl+HQaGXGKge602AQD16T4iqfC5DN1O//iTD7WccTTLr4Yy7gkzxa0kEUtBqkFTzvU8jMvhDFjlDsp3sKjunlGYTL5menn/c2/fPWvPv3yyy/t3v3i87sXb7+w+5XbL+xu335+b0Ufr1q8cOzqmJh55pn9ALcUbBXuaN+hgEhIWITiqXBMiXsehiZzj+s+vnRu/E4AJ//4ETapZ66456ln5YmvsbmlDTO8CHNRGIUrZ5ZZeeLzJ3jSFId/5bkvf3WwauD9B53bGWYrv7ZXkbPivt5FqVq50fY6e+VNDN7Oe3UhSyaHFA4+DMA6t07jnoI10bFiiUerk2GgvlF+6gBPGLnnz+151pFf2MtnPpdOfOWUV+VIx7DzSXNHYaz0UVD41qa1FYVkcmGwNYlUR32IAag8lzwvi/AV4RsfBh1lGkxNJMmKiWOyJw2+DcjwhrsBytEdaZH6J4cTw4lfZasTCsPihGF5MRTFqf6epS3ekslxuxiwHDtxrIosm9gYzKSJTOQY/Y4MMKoNAOmq4si7MvK7qFu94a08elLZDHp1I88WKtzD0D1jw2ofmaFbO/JYXmHA5Sdt8p4fvt271Kn2DE9lhb20/D3zL61n1wyHtUmC3VwDLpkgH9Iltybsjnh5AZqrvskafiJ5R9M/v0d11YVswptMK5+MM5Bgi2ACa/2Un1VVPFg51g8nFuKHW5h4doVX4WfxPOtbnuVX/af8kV+GKOOCLmEo4bkJmjzw6giboz7cForgXZ5n8XSesPie+bl31a7klF6wU8i1Qj0nuwxQfZKf/gk3fVLbkC91dYUrvjwru8mmNMoUP17iIxyrz3wWR77FlR7xq27yZtRZKHT0WL8kG/DWJtLou44b0SEMFUcG+ZEz+cRfvMXLRV154xUPsFCmcdFlYs4oajdRXLiRaTjrn/o+XmEdBvHLnX7xyj9y71J+/hNPflO/yI8fPso7V55w6oiXkyudroB1RK7oaUa/ExXNAciZvLRJ7acsfpdF5QdrekMfI9fwZhTBtPJM6JNrMq9vwplsF4eLV1dU/xTmqszSwGjiJ13yJR9tIS4c8i9veQl3ycOYzWimRxjT5Fp/lD4MGf0MI5f33+hPWMsjkq8riteeL+IqRz8iz3A2NzInMh81vtB9XIsV5qrizQ9y4GXWR71hXP3WfD+I95uv/PlffPq553zlxCe8jab76u3rn8AJKDABzN3tnrpxrHSOB+MpABrOhR7EzEWAvUhaoBF2OxMmJIR/KrzyVg8NqB4ayMttVtUpJf4aa9a9dCe54SK++4TbsyuBxBslbUULb1wrFDqhi5/OqfM2UZWmfLgRf3WzTUwxOetppd3RAX7iWo1ymdAwjljz6kvQqnv5PQ43/vGgTTrep2OnJLWDyZr2429iZiJPYelsFFyyR3G5n/jARf0i4cXnJ25+XO0ljY6HiptbR2aA2g3wVTgrT1Z9pUOUZy/jG2wZo1x54qV6kwvU8/JwgZ/Jf9nENxdWlBLFrh4mlvA00DYhI2+MJ3xqE32BsnWfMo1feZa/uiTnZClc8QGX+czPczIHc+Q5hedZe+sfsGYkw9rKr1UxdVEeGfDumlVIuxmwtlKFXzT56xk/k/cl4iP+yCuZmXmqh2OVBl1Yenav3mS3dCb02gK/XHKkbp7jfeYf79OvcpUxMVXWGndxa5/CufLDi/5mwm4CaeWX7ozItaMS6mVgM4l0lDGs5YPw2FX51aW8LuqGQ/Vh/JNrMgO/3jNrZ4A/nQp7upy8NxaYIMVf/IYRf1f+Z/GNJySue5j2XPrygrUJgVVTWJtEzqMw5JpMmyDYBbbCbsLOMCH38sfjZVJ1Lc/qk3+8k2N6xIQZMdjwol8i/MGaLBu35MNoggGdw0XlS27dT/3hWTqX+0mlKw6cw7d8p2scZRiZpBsX6RHjSeOC8uHcRyrgbPfLTpm8y1+e7it/8nSRe3musS4/E0ljtjLFg737sBbPHMWEsjGTXGsPzxY03EuDuLCSV3LkuUscYcUVvzaAU2n5uc+v/JUNa7JtIcv7obAWX77SWKBIZ3sP1zvHdh1nmeLGB//KWyJd8Ee+8kPx7d5YaA5Cf5DtxkdGXbIOd/MrmMJWfekSczR+UbJcOfyrT2VO/ISLKw/+pRPXlb8wz1zjsg/S0CFOr8DaaZB4Ta7JtgU4O3T+hy55Kq/KVmZ5V271uWzXmMEgtkBvrgQbuDL46Wxzb7qavuOnDehEmEfSwAWv7rme3RdW3JPcGz/88b8dvfe97949/+zTOyJPLekmZMNxu4WW43VHJGXkoQPxA9hTS4LAE2k2nmeMzfCR0RO/BbIvADm+QHB0RIONo0TArC7VA7C2/xxJMynTiDowpUnhnIdqIAJa/lzXFEoTURa/Y0P41KnwpIPKQ3wTa0clDZb81EG4MPHlJw2hsmNksDXRcq6awSU+vk0cG2B1Fgqq+shXPk+KKl+dYKKjwAMudmdMHPBqIqNzm+DoWFav/fN4JL0LkUnkuXvlIHidRjM97MQNG8/eE6CI8ARnE0oDVH2g1V4viJtQ6uAGXsrWgGyi1oQSD1MeTuPpYfzjf6ap3pVFsVplwouJi+OBjDwkjsukh4xQSCZodsC8XxIxpNRZeHUvLLwnL/waNOQficMfjym/8rNr6OVpgy0+DQbtgkovHmPfyjqZ1t/0E5NjeRanssQvb+5lUfWUp3KTG/WBk4kZQ8MqH13kwxJkJwrr5NviBSMvgo0yptyuyxRXOH/lwyKCd/HJYG0cBsJMasi1xQjpLdQwTsNLXs6t63OOEuqPViFN2EwQ6ifxKp1yKiNeLsudMl2e6mZgNTmnDy0OeefSffJAd+iPrRi3A6atwk7e8Aun8j+PK4+JmXLDQb5wwp+ji3ZE6TnPZBspVz0YoPocjPnhmWGKasvLxPakPPFeGYVXF3yQa3Ji8mLMNJbpn9Wf7tMfYc6AZXTQi+k/+aur+oWb/GsrWMFslrkAMH7iS5nyQvJD0tIbVtbpt467WjAsXy6MrarbzVAm+ab75KmfKp+hV1t6vkyqDuXpeeLBnw40puPBZPhLX/rSHazxqT/im4y4tyNjN13/RLAJa3VElSF9FC/8YIPW9cVDWIS1eIwHiypOrMDdOI5v5cpP3gxrCyveMZGHZ2O6/ifeLEuaeIvX+LyoW37qqFwu3BBdbXxn4DM+7DjSKxFeybUxRxpjkA8B9d6vePKEc/zzq0yuuhfuXvmw5EoTDoWJm5+8yCVj35yPkUaPWNia44q2N9d1hJv8mvuSa/nQ2c0j8YNmuYvHJf9UTmXN7I0/5IZe7DipOZNj6AxXcxB91HHI5BdW8FGfiXP5r/1mee5vSTyZgsPdrlCDLdmt0+4LvGFvicKX7n5hjQFluHq+L7Mn6GGwN4n1L83urYA6dzpxmXy710G8OMZAstJnYjjjn1UdjSZujVjeOozyKTlKg0ATCv9DZKDRVkhjuzxLa/A0mDumxVjTOadgKMcEwMTL/99QnsJ1CEaETmGibvWAUkrRy3uW+STaDx7VV93xYxUYz/izmgM3A5qJproxmqSBC4UiTJ0Mcjo/PGa9wp8xIEyadV2VwW8qe/zAGilDG1E+yrfaS3mKT9GYAHhx2uCkM1NIVta128wH3xQqVxvhLf6WiBf8UQdUntWz8nrGl3e/UPLqeAY5YlRTtPpAx2QMFpSpCbPJjT5kMOaH1uXK06Vc1yyn5zCH8cRdnzAopfBNbhwv0abytIrEKDawSutlXlhTptqYLKDKWR4GJvGV/2W48IaBS7n4yg9GZMPxBjKMf4YQrOHL4OaaUEhP1sipiad8yLXJ8cSazMFMPFRZ6hZNGdDPkPxcEd0Ga7KsjekibawO8FYGvk0G3NOD/lTXCrA8lacd8SGNMifuk4fKzK/nR3XxV3n4qF3xazDFF5mAmwUMGNMfdkthLr0JPN4ZrvqwCQ+83cs7GXXf9SB+8QEbOMs72TZZdM6eDmEMkWsr66i6wNlqqjR0twUtk0d5Ivwg4dKQl/JfAi7wo35rmm05w5QrfnrAMz7FJ0cMEWMnXL1jgG96Dy6MKTqSrtRW2ghVN/nKD7k/iQfh4gtzxU9YKL9+pe3JtZV1OIrLpb/0K3yRFwYFfoTJJz7Ij/voJH4Ke1h31lPak56rG3yN/3izI0CX6Kv6LqwZpuTJRJ7s0RHiGE8twJCrjCVlqWd1CRP+/Kq7ONVdHO2nfHLtQtrT8XLl02GO9Hs/lHyKj+gLOpvec2/XiDGqDeVfXpW9JBp6zXN8FHZRt/y46qR+XXYO4aYO6RJ6WV255m/mlFw8G6vUVRpzLYsb7uWH1BOW6XBluiqvePzkJ672C+fwMb5pa4vIZJyB5Ai0sqVVjnJhjQ/tTq6906OO6oOU1zgQL0vA+Jk8De8L3SprkjKSAfJtIwLG7sNav0XGKfzD3PyFPNPV8oRX5F6+cAy3wtbuje//878efeD9L+9eeO7pHWiwt0xXxobR0dF+4lFiBT71FOH3+YY9KVDaWUF+i/9xpWOqfN4prtXyz3/+87tXX311GZwMQp/97GcXwSE0AE1wAApYVvlnPvOZpVGsCnzqU5/afeITn7iz8nVW3cJFPshzQuDeESGft2b1EwIKXPnF3+O//4KUwRSPJv5WAuwkUTB4Fl9+FBPjz3E6E9v8Wdo+lenFXvXScWzXR8pUljwqs7DH5eJB+Xh2qZcrfigJk2NtSPkyTFywo2zUyWTGgAufzjHjXz6RvCmR2rcylIO0DxLOz7My8WcA8oIpRaQ9KCaTnUj7eJlQ28AcXxSTyVdKSNzauDLVG/Vcfhdxa9NkIAzUSxgqjBvB1kUefVnmtddeWwaCcFEPdTKZMcGnyLzoyQ//jCZloMp0L6wr/8qNH+lMWpVloLFjZEIDa/wYDCaZOJJrOyzywoNrkrIqZ5arTJc2K3yme9R7ZZiMaHv1qW255C6jTf5WWTuWYYfMn+Y5qikewhudYxCQl8mEYxEm78ohV+qA/8pZ14X/9IOtdpAfTA208LXbbKdc2+OfURZe4huErIx6UV3dlI235Bof5X0apvEYtvK9DMLnrGdtO7EmTwx9dWaUfPGLX1wWvvhHdKIJkTo5oul9CAat/NVJvd3Dc2Ja+rUrLkykU26XL0vRI457kXd6G+aR9rVzaCELznQavuQTqSPCh3JgeR6eSn9etzY7qa2EuQrLpastWtGP6mg30qIdOYtmnRgj/urAQo38GCrJVeVLJ//KrK7qvm4TbYoH/Uh/8qK6NvdMh5D5yGKQnSw7WuTZxJ1Lt1Uf+aPKdF+Z5XNRV71mnvMZH9pbnxWHG6lT4yI58q6gXWljVQRrdcoAJNewli+/+kn1rN7Sd48f9z2Ta30CzvCWllFmPsMw84wvMhAZM4zLdkMZxcYK4zasI+WgypFPuE+9WHjpLuKqg3Jggaqr8pSjnkgcC0n6MXyNTcYoxn/pYM34JL8Wd41PvpiJ6HF5yUe+ylG3WZfqX509z7aHNb4sHhov+oiEcWQetcSH3Sy74ua5dAcZ4B9pw/CtjoVx4yW/yWd+F3GVHQby8YySb3Or5iLmyvQIGddedqHhrF7GJB9iUr/SxldYh2f+a3dp4TkekcOMHpEfPFRRhuts738G4mUDeX8pj+ajMQBqIk1JUoYpYjnG+xQMwAY6t/vzcCA/eSXg5Zsw6lhWt0zAKQvHVqxkURjiEmDCQEh82c2gY9XC4Ip8Dc3ggicdxooNBUlRWTmweyHM+0UmV+qN5B0v3OqtrgQKv+4fZzviU7n4qaPAiTLgR4lTOBFlJsxgYOJjNy5K4Rv47C7UOeQvb/nOuvGrvviYYYxWL0wb6HVOZ6mthJ5EVtUZZzqsASDShg0o4S5MuWFf3MtyZ761sfK657riwT0erTa5kMFLuImzFXdxYE4OXUjdDBaUkzpboer9MeH4SK7k5b72iAeYI3kqx+Rc37DNznA4ici3bXYvqlsBXpOy6nczrLaNrxl2mfeVA1NE5tQTX0i4CUOr5vCjk+gBR5TcSxvO0kgLbxNog4MvmFkwQeoqvjKUVduGtTB+6Tu7VmTZKpx7xnBfE1oyHD90EiPY5Abu0cRYfapz4bm1s+ez4hX/YV11VD+yqX7qj8LAPV1vooCsSgqjQ/rfE/7kuImlyYZ8rdBrIwsfdC0/ac9D4hpvtCVsrfjK37ERRtI0isqPLDsOxRjty52FqWP4yTu83b/dVJ0rU3nu8ycLnskhfuxwIIY1Eu5oG1lD3O5NhLQFfLQfHULOZllLouMfZcovDKbO5g9fE0dtSFeTc2PsmiymkGlHzvWl9JD89bPGkdJVV3y9HZjL11U5lbv2D2N1xbMxDtnhIPswZJAyUNDEmm5FsKZr7N64yGllVzflVAY/fPFLx5BfWNPR5NrcRBsz+tekDxkXnX4xz1ljK77+i+q/6zzwh3LX4Rd5Ls/aHobhAAPhnpPr+NAnjVMdi51YM6bU09wM1vSH1yToIuWor7xhj2CL4Fv41Gd2ThzFJdfa0X/t2Q1fEyPI3I9cM84YZhF+p5xXt8K5yp6uuofPjPeo9/I/qdxkTJh745wLwc/81TzMIodPxTvJgxjhMCVfc3yqHrXjEvmUn1t7g6iKQ+HYQDJBvrnvlI7OBd5dk+le08kTsBTuCrwAjKmeT+HniXgTQAKiAZCOmDB6xjO/6sZP3OJX1/MAvhRw/DMxIfBWIAwKhDy8O5fN6NHYSAei2K0O4MvOhXsdzllYg4rJC5KfQYExpSOaPPrMMMFSZkaXuCk59cFbAln9hHe/ZP4YfvBRmRN/vKOJoWd19IdicDEAUkwUs8uRSM/CUhAwnbtm5RkG6iy+Z0ROKB+Y94eYJjpzoKX8TFSlMUhZGWOUMSzKH9/lWx2mzC0RT6hf/o/qpmzUS/vCsbpxu8dL7T8VtXCTdgMavk0YyB7ZpZA8IzuVZE9aZ4SV5zgQIyvZlr6658YDlx+sTVYZ/ybtlaMMcdRH+5FnfcXKmAEgrMNJXcTnyrf83ddv89cu7i+Lyku/dF851SE8PJMv/MQrrNVHWtgy+MkbQ5EekNaRJbIIA4sF2iEMhFdX+Sv7pH7M3wBroLU7qP3wMndSpIcxnWEHw+o6w9+ONQpjeaFcPFSnJWD1gz/XZVPlyzfetO18Tu+TU/VyFJOf/mxyA6tWK6Wz6GKFGNllsFACd8bVw9RB/o7ierePXtKmdlKmcUSuTWJMbCxkeY9OOQhfMFXHsM2v9q7OD8PXkvkpP+F5Vn7iFG+WH69lrR0c5072YUGe6WkyJw/yaELvmJC2sSggPh0/eRDXszLWsi0MrnYvvP9ElxgD6JGps8m1dqS7Ha+3I9vJCjyri7zShdVNGH+EB/cuvFwGVU95kkv1DzN+hfNLlmc4PGBtAi4uHeIPWMVtXJQPLKzG6/+wNqmEhZ3S6qw+4kYwSPaqL/k1YTcPMf7SU7BWVkSm6Q982bGym2KxVjkz/+IrpzqFu/KKKx/3rvAo7aO68mqOUZnljZfKlr/w3OqkLu4t1Aony+QOaQNy6GgYrJ10EN9CKhl0r32qT/lXLj5cdIbxgD5yHFf++lCLOcqSHz1i/GAkkGtGvzaQv7xhWftVL3UP84Xp45948hgeM/wi95Utj+rKL3/lzXvxLAQa62HK8DSfs5gKBwvX3sMzHqofrBnk9Gn1fRC/t3bHR+WKuB+mCJojc8uLRbu+0eBFozUo+/eOSr3vQIFeXJWqkTGW/91UT/aOMBBKFJ+EexL/wtRBeALEPQ/gcKjuXGlqcGUxcBxpsStEqYijwa28txoUT4TCqqL0+NcRCQSFpDMSEJ1CWn/yZcWOMBlc+MVv9VIHdZKfS3hxlImXFEY8PA5Xua544OKPHzdSD88UAkVDwVC6FDNFRPkbKJ3xN1DaodNhHHlzZMUqhDzlU5mVWxl1OoO2iY08Jg/iwQzODFoTR0dgDALrCTv+4K0MgxjSBpXtWd7JXLK2RLzAjzxdypR3PFRObb6uV7gUbuJuNcrEAsbeS4KxiYi+BCuyiAy+ZNHgyUiCiXyUUX3dw2RiYDJql84AYGUoHpNVz1aSrKpbwaP8YN1OlfD4jX/1RcrjFw/8itO9tGsZWBI/5E9l4Rvu8p18CHcJxwOqXdyrl8mkQU3fNijq71Zpkx+DgMsg2UKKSY6dDnHkj9yHMT+8uLSVlUf6xyRpHnuSThxt7ugkXaLv6F/tVImDd/HkX508F8adeLqfz5PHJdEFf6ofLOFOvugwZU5dJl68k1NYC6dPTTbswFtkkp5cNwEh1z7sI71FJ3JXu8a6sOrYPQPA5NFRYEeftdskmBnE6SW6DNYwt9AgDxeMJyljlp0chf+M+6j3lS3P6rTOS7kuvIjvXtz48OxeGHlWP+F0CdnWz5M/cRigSBztoB0du2t3WDnxwnVJl0s3mbBbQPBxgHRSfIsHa2Mk3UGf2XFxTLc5gbj4lm+yXT3WWBQvXirnIq5yXeou37CtnvxQbmUJTybwTYYsINmp0b+9B0S/woi8m3DTuYhRitqxhIW6odoSP67aQHrjK92krUxYI/k35tkJ9B9Oxlz6yU4VGcdvuLp3KYuhhoS51FN9Jj/dr/tF5T+sWznSqSP+kwdh8RbPyk2uufqq47CMbJN3Mg1T8od/WLmQ58ZHO9L0tzxqz+4rtza12wdrcm2RbFIYkWmLPuSa/tb2LQiXn7iV1X345x+f85mfeGu/ycfD3IcfvlzRuk1nGNxcyBzLIpLFbzJNt9In8LG7pA3V32I1LE7jnT9Sr1tv+VNYwkfwXWwi/W2JtGdyD8CxsbQkvbuPtN9vkqFEe0Uo/gTN/bqSx9m8IxwdFyjxqEPolACNNJ4r0ijF12CzvjVgDV5DFG/6zzxNMk1STLwRo8jLfFZbpBU3tzydiTdo62xW4awgU4TxZuJIKeJPffhPXmf5ypxh1fWd5sZjblh4Dh8Dr6MocHGEhus4iwHXCgOsKDy7ElyK2oAN86CGutcAABnPSURBVI4cho0dEquX5MKxga9+9av3GUdWk3VQeRgAfIVHXvJIoYUjPrVF/NdWhecKPy2sOA/ryrPypY2H6lp+67LX4Z5NjlvR7iy/gU5aeNlBQpRVK7fq7cVtODEgyTaSRjuaLDIA9ElHM6xEGsi1awRnx/a0m3aGtfaD1cR68ryW++qX7Mh7Yj3vK/dRXXwoz9Vkorzy77lBOP7yhxVjEL8mHnCko0zSDbpkFGZNfPgpl/4gz4xSg8LMlzElL3Jt15ohauK+3sWoT2g3uoRhJG+8NOnB58R4Xa/ZFtVp7UpzmTTLxJvndRnqkAykO+DEuPTMSGpVlxzDjHya9NC7JoTw0h5k0Q4pXdA7b5XHKIK1dPL0GWmTm2mIaidGFle/sgtIl5CJ8IzHeC7/NW6XKb/lPfHMb+1OnN3HZ/HiN3+TNcYJgi38lGPnmAzTITATnz6Ao/Yw0bFwAK95bFmZFhd7j4sxy4hl+MsvMn4bGxlH+hUDl5GmT1WH4nL5RergubrkX7zqNv0vch/uufJS9rr8yaM4M75ndSVPLrJLzmFFd5Bh8w/4Ih8YSIeIQ087FUEXVC5dJh1db1wly2TabsY0jmBqDDY2mKgzHPQv7Yjn+JbvvF8YGT/qM+tdXFHm/UjyyLczv+pbZhPX+MktTsY//Qsj+puudPzLXIQhSt4R3OlebUIX0x36BazplXgRJp0jkmSMAeCYu/QR3si1tmqRxakh98Loj3RI+ZY2d12X/E9y19icFOdh/OR3Gl/lM/HPjwsrhjdsyKJ5AtmDlzk1vU2H6PsWQOBpvtyrA/KQFj4IH7eYNnt7afFb7u8MU7aODFrHA5dkxd2ri7c6j7d87nt3dHOxky4btD1nb/9vwACasJ5F4lbP3OL3DGxXDZqb32wMYTqQQVjD6SDeo7CCw+ApT2WI51kDSmfC8slPfnJRVJSOiQzBQJTYnDTG4yG5tRs8YFq9uSYXVhS4lJZP+lJQMKb4rQwbCCgUSozyNviGmY5mR88qhLYxEHiXq3KUYfBw3Eh7GQRMRk3Ya++FodXPbM9V0GN5vIzywwjDVnSt3viCmUGWoe9DJlaFEbyt5NryNrExUDqe5YXRjALxKDI7fCZG2odC014RrK2I+TKdiaTJEXl/kFI9rb6n+VfeZbmVk3tavqeF8w9vSt27PxZHGEhWyUy4e7eAfjDB8d6hiSGMvL9i9458In3GCiSsrT42eBvMI3rQcSPHKQ3a2s2Rm3RL+ciLrJ/Ge/k9afck/vi59Gcy2nNYww5ujqfQBV7uZ7S3Yqvudk29KOzoksGXvtEX6JtIHOm45NqkRn6R8hyD0q4m7LCm99sNFA+PcJ68Pkjuy/9xuhPneb/mofrU/+lgOpRxCCPGp5fd6YDIBNEE3GIXfB1PYtzQuRFsybUdVm1qUtpOVHGMmT5KoC/Jp0Wbwtfuuh7r5xn/rLAZ72HvL5ov2Qlrrp1Sxry5Drl0jNl4GMHMqQDHbekNC44Wo4yTkTh0j4UV7WmlfhpH4pFjHyjSrrB2/L+FsfI5r3tRDM5bzoz3oDJPC4e3ix6lq415jCJfFuxUROXwN88gu/o8w8pcxG5mZJ5iZ87YatGAvrcQMIlx5Bid9NoM5vpVpI26TuO7uFfRTW+TL3ML/duClHmFuZ85yOc+97nFeGJAmYM4ckjf0uXppOp+7zmyfK+ZS1ASGlU3qfOyrNVsisTkocEzBePceCtSgBUeJXjyXIMuTH6oxixdncmzgZYisUVKqUgjbbw2MCrD6oAOwSpWXh0znj0fMlW/2jCX4ocThaMTmJDAz+Br1Yuh4/0CF39GKVeHahJoAmpr3AuXDCQEY5g7nqdjUUBWe01wahf5XAeCtbrCy+TZZZLtWV8xgMKTYtJfTDDFp7xhpY+550fpG2i932UFuYUKRn9YU2qOeZkY6T/y0P7aRB6uQyd1NEkx+MG/3QoTE3gzfOBqgigcfmSen4FDu8DLBxhgbZANQ3qHMcAwENdRURd/BO+pv6RTxiHQlB2yiMggnK2A0yfkT/3tPNMNJt8mNSaYjCZYaAMYW6GHMz+fOXY0104ruU2fO4JjpZg+sYPBkGX44wW2ypReGn7y4++a/F41/PE++Q8nWJi0I4su4pig0710CFll/DuODgMLKbBp0s6PXifXPsTgOXk1UWcIaRsTVkdtrB6veblqWJ6X39lP1VkfZ1i6hzVZcyrAAhf5Js/klXyLw23SDVeXOBYPHWOfusERsxZq7azS2cqSRnvhxeX5OpA+3bFN4yGs6G16mTzD2Q4H+YY1+UbmgMZSOlyYBS9z0/QHDMk+2TZP1H4WtLjyUY442pYu44dyl4cD/TEv079hZX5Md1s4sfBCN5gXWnyFj4VdcjmJTrrXZ4Zeo3sAEZgAonStXBnQdGDhLpTA2bpvxTa/ICOM8pOWmzBWDv8GBGkKdx8P7ilyQl2c8lIeiiduZXGj8q3c/A/NnfUME35hwo9it2JGcXg2efzyl7+8HLVjSLoYShSQ43e1kXZyBMHkMmIUyctZeAM65dX7B5Vf3EN2YXOSvJlMO0tt0KWcrAD7xPz8QpcJjyMClFUyLz99inGE9CNKjHH0sY99bPlPA30C1jCPtB3c6xf5H6pLtumFsLcabjJuYsNI8r4Fg77jMu2CagdYw0laOPfOAez1EcaRVWKrxZ4NKtoATb0G73X7X0W81cMFD1e6xD1/z/mRPRMWAy/jyCKL1XP3sGz3zWolOYaftOTToltY6xPawCTSai9jX3taYaZblBtVfjwUhr+rTOHCnXXxnD6wGm53iNFovLXqblcatmQPmeh84QtfWAxMuMpLexjDxXGlM6zIW1Wmn0ycWlmHaW19lTE9L+/Jkvhhb5LtKJbdUnrDsURzIDtC5BeZyPuEtIl4ae186AfwS64ZQtrMO3R0h4WWDFjpxC3Pyl8yPOAf9ayudCpsLKhaiDEO2r2z2AIbxPDkB2u6ggzT44wkOEdkWJtpO/qDzoG1PiQenZ3OT1/P9i+fQ3VhDju6BEYwYBQxSGFv8Tu9bZ4BQ3inDzYD6VgypmImiFZLzksAXROA6xCFJZh1lhR4A0Lh4rsn4BrRCsK6DAqGn3jlI1/3yhZW+XW6+Dg0dyrbcIJLxqX6uwyKLtQqpRdEDQhWKRlGjCHXaUTZO97lXQwrvq2si68MvCg7Pk7L51D8w5aL1J3cwcmFHBmCMUzmOy5W2l2nESPIcSXHTA0CVtkj5SkrStZ7PlS3eld3z2TQLgdyJKP+4L2vdj1N0DvueBI2dBCj1qq6TxzPI0vKSMekV/ihqW9Oyved7lc94pPOJUv1X+H1aZibgBhskRXyJit2LKwMI7JuBf4ssqLpOJ3VXv1jkjyVpU0aG4TjJb7i8yrLvfq41LV6kCfP/JvYhE36PCOJv8lNq+3FW7v+LNIOhl3+PulenORa+cq9DhTuXKTu5IwcJotwIfeOMzYXMtk2sTyL9AnvF9HZdkyi2tlz99cJ7/ptmNs9auff7pL+zCBlhIYR4/QssjjrSKpjYt4rm6ScqbeUr01R/vW5me5Q7sM5HOiO3i0l6xYSnWgxRtoIsQBjsYrsGvukI5+bgXQsEQHpkWImtAyTdSf2LK6tUasnBDvB449S5IwbE0AWK6EkkOII1zkMtqWZ6dwTaFcDpDLiRZq1cPfMjZ/SlG5h7kB/YFLbVEV+YQCX2oAfQ6n3hkwivVyqwxgMxJtkAur4nXazwm4lwsQ946hypNFm1wFvdVXPibm6wyKcC7MKRvEwcPSZPsIwP58c3uJYdZTWYGvV1yDAX7tpR30urJWn3OtE6uwKf3i4hw0sDJbtsDH6TWzgTmfVJvCi5/QD6ezKmdQ4TtcAIQ7MkXxr38qXDnm+qgSPSD3q++ldYeoNh+rZThr8vKNFD2gDX6qCMQMpw7S86Q4ybEyh++kQk3YLNfKuLZXR+FGZcJ58zjYs/6vohmv1V09X+iP5KtxiFqyNqyY2xlV4rw1/+NiJM76SbzK9No6UAevkeuJ7FbE8L89TdpIr+Lpggdz72i0MYd3XA8l1rxVUHlk1NkqrP3g/1K6f9OWlTP1Dn4K559q2fA7dTXeoO3zDQ70ZOsY5+Pjogjmj8BYPZ5tZdKRH5NdCrZ0PJF9xybb2oGvQLFv4daCpx9WZzoaJd8NhLdyClh0jO9M+UuRUkV29xr+lja4DWA+qYwIIEORsrjOJVmMpAGC6xKMECJyjQbZGbeVLtxY88QFu4g18zxS2uATcVr8rIVYupZHiIOyuKOFXjvsGcLzMspWDxHEvvxRfeR2aW/3UGR5h6B7enuEVTuIL05audoXsHFJQ3ieITDSdofZ1FJ3J9rVnk3h5yyusy1953ZfPIbowROoLAxeijPQb2CSPsHMsEWYUE+Vve7uXgsUT3zsZdub0EZNHuxoGYCTtHGRrX2XBu/Jr/yXRgf0kV9XVM9yqP0zg5UMj7k3gHQ/1IQdfA4QhgpFJDD1nZU37OOpF9yHtUVm1M7dyxXFf+UuiK/pT/WBCH6hTdXXPH8b8XOGiunS63SCTdXrBhJ1RSrZNKMkrzA3MdkG5Jp4GYrpEfiahyTDc3fOXjluYexd++F1lUo+wVWeypF6oegrnP3GgH/qSIqwdZ7R7x0jSRuLDlQ7xPiQ9Ik07rMpSjnjxUHvmXmVcH8T7rDMM0MRfOLzJtQUqxo55EFl2ysJHG6y2w1A8R7zoEFjrO477Sqct5OtKZ8tbmXAWjjzX7ovHAf4kx+qvrq5kDT7mgHY27Sgb84yNPuTgmKPTLNIhWFuY9f6c/g9zeEsvjrzk67400tXOlRn2Bwj1nSqFQx7wIK9ksVNEdAPMfcjBYi3XxgiSfpHdMrjubsIDByt8Vp1MigkTcGfH9uxLIj75zEAi8OLV0a3WmmQ7n+6dFg0jT5Nq56dNWJzb1VgG1c5CGyg1CjLgMqy8N+CIgIk6HvGhfPGUyc9A4Xy71R0dxyRHnoVfh7aFS9jVDrChtJH7iZ/7OcnwboGO48iGHQ9tgbSbI0d2m4TD1KUNylN5lbkkuiY/6rxWvjChsLkIVkg8hqiz6e4pfvFcsIa7/mBVzBfAnNNG8tF/uLWXeFF+nuPlkNuC3CF1dD8vGOVP7hlHLoa/ozNw6/0N4SY2sDYwSCtcW3DTHZW37lt4yG+2x8LcFfsJw2Q19skTXFzIsyts1N9zCyw+V01WHcEzYTfowpku95EYRzjocuXVR+TtHvGvLO6UbeH8KhMPV1nO4YZ/dVKX5Ew9w1ccBAf1Jscm7iaIxk0LMQx/k3fvZshDnt6fM7G3si5/8slfHp7zWzI//uF36KSOMAr76lv/DZvkTlwTcBNxWPvQiLlGR7+0h4m9Y6Im7mEIa2VMGZVn+VeuOLNN8j80N7y5aLYBjBAc6GGXeD40gnzUyNgoHNZ2+Z2o0GYuebUgWTsuCU8YD8Wln2a7FPfQXDIYzuQuma6ewvgl33BBdLEwaexW351plPI+9+oen7ivKqd4EEigABURxrboT0myTKKLLy1KQRBuX8vwWUHK27+g2y0iwL5+Z2XACiMi/MIJLUFXNmJkfe1rX1v8fCKT0q8zyafOJq4z2MrzJRmrZ6xiK2gMsnXdlswP8Af22qOOcZYiELe2CgrprN7A2uquSQ2CoUlNK+v85K3Nawd58at8mNdW5X+ILgzI66x3uOZWb8+ucHGsgLK3+q4PCIOnlV5hMz08S28CLw9l1gfwwa+8K/MQ3XBR5+SMH/njwhDBp3tKn/6hG+iVsLKb4UMaxZPO/SwjDPl1KRt57r54V81VB1hVD5i6Jn7i5Ceeq3RcF9wahBlKFqhgXTwy7QMxGUNwou+T5cpXbrpLWqTs/JTjubCrhnf8qufUHerT2CcM5Qcb2FokVHcYuGDpOKmFK6vuYWgxoK9/VR6s5SvP4sF04lm5pTlEF37JDxxcMHFF835ibVy0eNg7uvIh576g1nFzeYRv93DWfuLPMuEt/1lePBySW/3CXZ/nZyxrATfZTAYZpR//+MeXI4v1C3JOrs1JovAMc/l2X17FjY+eD92FQ7iqKzlEzROEudLbwqTRLrDSNvcZSHe7yZLXtfhJYAlwZKXExA1ICV3h4ptAJ7jSJJTuvQDmE7qOEhFqk0DnzSkDisRZdWEMGp/xbqA0QXfMRb5ehrR7pCznemejKqNnnz71j+yMLtuyyrPS0J/viXsdOoY6hkn4nFRvfif5S4McDzBJr635zQ7kOcVTPtxZdv5Lhgf8U72585pVXmMB1/AzOTdp5xd+uTOP4vMTvi6r55nm0O/VOSzCpTqHRzrJs0mjs9UTf7gKQ+K6D+ueC8t/lrH2K+yqueGF7zCYfvnzSz7d588NV/52ne3c0eNwlMZVeywJhyz3XJ6zXSqjtp48lO4quuqxrqfnKXfVFbYoDGccu3d254yhSJhxdsomP8+zvPyU0bVkcOA/YRD+Z1VXHDgh9ybmzVf4hSl3kriR+2R3+vGf8Qo7RLd6wiHiR06j4sDbvXmn950Zn1F4ey6euDNtcfPrufizzMIO1Z3YqGNyusZGWPi4n/J6t4VORemusJ8a5YoHUMAuwAGREGVtVrXCAIko5OLwS4kLA7BJtcv5fmcdKRd525myCoMyskqrM/icsZUyn9MU7ryv1THH8nQagy5elMkQ+8pXvrL8D4Eje8gRBOXXGWfDLxGuwQ98XCfRaf4z7sRv+ndfR/Ncfif5Ff+Q3VnveX9anddxHlZhJ9fyX+d1WpmH6p/snYbFDBfnLLlex53P814+PeceEr7qdFK98std13nKpTCyuZbPddoZPsPmfXiv/dblX8XnWf/T6qneE9vTcFgvYk081nlUVvmu+ZhpD+0eFmGYe1Yd13E8m4ecl8QPZ/fr/M6bzyHEm3WfuFS3Gc7P82nj4zpu8adbvtPvpHQz3qHcq+e6rmf18+JyJ+b3GUim/ydPLQ8FuvvrwYhwRYwfRouODTD3DBMAB6S4895zho7/t/CVIp+5dLTCdmmNA/zS2aGa+VgNs2rg6EvGF+PIS6hcg4A0nZP0rXzvObXl7UtUzgN7sR3v8bMUsv1sCGwIbAhsCGwIbAhsCGwIbAhsCDwQgfsMpAemOMAIjBYGkh0bRoX3hpxDzMAQNo9LgGAaVeIJdyEGkpfMvcSYkeWDCwwvfwZmN8jXMsSzw5TBJK1yC7MrJE9fy/vGN76xlNmxP8aSY4AMKUdn7Do5ivfRj370znsF+MowWxjbfjYENgQ2BDYENgQ2BDYENgQ2BDYEzkRgM5COP8rAeGH0MChsIWfY8HPviqbBxC8DJ2OEweXlRc+MJB9b8HlML+366p3dIF/h8blSX+SZecvLZ0lfeeWV5at04vuzNsZS+We4OU7n/2V6edIRvf5/IF4ZUPKcZRS2uRsCGwIbAhsCGwIbAhsCGwIbAhsC9yKwGUjHeHix1scU7Mr42pB3hRgXjBIGhisDioHiv0b8P4BdJ0fi7ARFxfdsx8cfY9o5sjNl94gxxoDyOdj+40Vc+TOufKnExwKUY+dJHj7oEGX0+CTkhz/84eWFYHxmQNmFssOEj402BDYENgQ2BDYENgQ2BDYENgQ2BM6PwI1/eP2No197/6/ubj/79G53tH//6KkbR7vdkS/H8DDJ9pWSG7tjnyX34383WaLcSXh080q+wMTg6D+HHGnzQQW7OIyYaWQwWOzEMGR8hc7nvO3sMHJ8CpqhlEFVEzCKfGnO+0KMqf5gVjn+h8R/7Pi/Je8VMYT4+9Jdxo5n/7fk/0sYVuIwfsRhxHlnyUcgJqkPHhF+p8E24233GwIbAhsCGwIbAhsCGwIbAhsCGwL3IrDtIB3/90efHAYP46IvtTAuPLsYLRke3jFiQLXLNA0Rx+J618hnt+30MLgYWJ6/+c1v7b71rW8u7xbZreqT3PKvDHGVLV87W0hZLgYSf3HEt2Pk2YU/u1DC0GYcLTBsPxsCGwIbAhsCGwIbAhsCGwIbAudC4NZ+p2gf9/4v2N1/ROteH099/e3ekHOV/g6JZJeGoZFRFFsZGZ4zNDKQPDNEXMiGzdGy67bbfe9739299tprux/84J92v/HBD+4+8mcfWXaXxHvxxdu7W7f2/xvw5ptv7n75y18saYXd9P8Nx1/NWzI9/mhDfDGA+qPBDLYMKfy4V5eO1+VX3PLc3A2BDYENgQ2BDYENgQ2BDYENgQ2BkxG4devmU8sBuvuDbxwfr8sAOun0nDhSHhtHV9RGYkgghgQjg7HEjztJeHGLvw9vh8nBw6PdG2/8ZPd3f/s3ux+9/uPdv7z++u5P/+SP72Tz1O6t3f8d/6ndzd1bu6O3/LvvfreHsfrWYmjtj8a9Zefq+PPhlctlBDHGGGftHCmAP8JnbukWj+1nQ2BDYENgQ2BDYENgQ2BDYENgQ+BMBG49+/St3Y1jA6d3+o/49GCKvsy37zUO7uZ6Ra2iuxW4xxBicJxGdzHZx5jPd+DaHe1efs9Luz/6wz/Y/efP/nv3ruee2/30jZ/svv+P39099/zt3es/+uHu5//7P7vbz79r99u/9Zu7D7zvfbv9O19QB/SN3VOOyh3vWtk9WiO855HvPn78TmMpv83dENgQ2BDYENgQ2BDYENgQ2BDYEDg/ArdMzu9O7u8mbOp9dMRY8hTdO10/PaT418ndo/H7v/t7y8cXfv6LX+z+/jvf2f3117++e/O/frZ76aX37L797W/v/uPff7r7nd/89d2HPvSh5U9dn33mmd3RkV2ho71xZCfr+J2n64TeVtcNgQ2BDYENgQ2BDYENgQ2BDYEnjcD/AxfhY1MiedVUAAAAAElFTkSuQmCC />
  1.True
  2.False"

Question 4

Which of the following describes how a soap cleans?
  1.The fatty acids react with grease molecules to form water soluble compounds that are subsequently washed away.
  2.The fatty acids form micelles which encapsulate grease molecules. These micelles are soluble in water and consequently washed away.
  3.The fatty acids react with grease molecules to generate new compounds that can form micelles in water. These micelles are soluble in water and consequently washed away.
  4.All of these statements accurately describe how soap works.
  5.None of these statements accurately describe how soap works.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

cdmart10

  • Sr. Member
  • ****
  • Posts: 332
Answer to Question 1

3

Answer to Question 2



Answer to Question 3

2

Answer to Question 4

2




wenmo

  • Member
  • Posts: 540
Reply 2 on: Aug 23, 2018
Wow, this really help


billybob123

  • Member
  • Posts: 336
Reply 3 on: Yesterday
Excellent

 

Did you know?

The term bacteria was devised in the 19th century by German biologist Ferdinand Cohn. He based it on the Greek word "bakterion" meaning a small rod or staff. Cohn is considered to be the father of modern bacteriology.

Did you know?

Approximately 500,000 babies are born each year in the United States to teenage mothers.

Did you know?

Although puberty usually occurs in the early teenage years, the world's youngest parents were two Chinese children who had their first baby when they were 8 and 9 years of age.

Did you know?

Intradermal injections are somewhat difficult to correctly administer because the skin layers are so thin that it is easy to accidentally punch through to the deeper subcutaneous layer.

Did you know?

The National Institutes of Health have supported research into acupuncture. This has shown that acupuncture significantly reduced pain associated with osteoarthritis of the knee, when used as a complement to conventional therapies.

For a complete list of videos, visit our video library