This topic contains a solution. Click here to go to the answer

Author Question: Which of the following has a D-configuration? a. only 1 and 2 b. only 1 and 3 ... (Read 29 times)

anshika

  • Hero Member
  • *****
  • Posts: 510

Which of the following has a D-configuration?
 
   


   
  a.
  only 1 and 2
   
  b.
  only 1 and 3
   
  c.
  only 2 and 3
   
  d.
  only 1, 2 and 3

Question 2

What is the relationship between D-erythrose and D-threose?
 
   


   
  a.
  they are constitutional isomers
   
  b.
  they are enantiomers
   
  c.
  they are diastereomers
   
  d.
  they are tautomers

Question 3

Which reagent would be best suited for the transformation shown?
 
   


   
  a.
  alkaline Cu2+ in H2O
   
  b.
  Ag+ in H2O/NH3
   
  c.
  H2, with Ni catalyst
   
  d.
  NaNO3 at 0C
   
  e.
  NaBH4 in H2O

Question 4

The monosaccharide shown below is
 
   


   
  a.
  an aldohexose
   
  b.
  an aldopentose
   
  c.
  an aldotetrose
   
  d.
  a ketohexose
   
  e.
  a ketopentose

Question 5

What is the correct structure for -D-glucopyranose?
   
  a.
 
   
  b.
 
   
  c.
 
   
  d.
 

Question 6

Instructions: Refer to D-iodose below to answer the following question(s).
 
   




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

nathang24

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1

b

Answer to Question 2

c

Answer to Question 3

b

Answer to Question 4

b

Answer to Question 5

a

Answer to Question 6

d

Answer to Question 7

c

Answer to Question 8

a)
b


b)
b

Answer to Question 9

a)
a


b)
The production of a silver mirror which is an indication of a positive test for a reducing sugar (aldose).

Answer to Question 10

a)
a


b)
-anomer

Answer to Question 11

a)



b)
The two anomeric forms differ in the position of the OH group on the C1 carbon relative to the OH at the lowest chirality center in the Fisher projection. If these two OH groups are cis, the anomer is , if they are trans the anomer is .

Answer to Question 12



Answer to Question 13

b

Answer to Question 14

c

Answer to Question 15

Z

Answer to Question 16



Answer to Question 17



Answer to Question 18



Answer to Question 19



Answer to Question 20



Answer to Question 21



Answer to Question 22

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+LPDOs6fpVjb+DtXe4ac28kKpNELXfbbndQpnEYYHcpKgmuV/4JoQ6h4a/ZP8J+Ddd0DxB4c8SaD9r+32Wu6Heaft8+/upYvLeeJEmyhUny2bbuUNtJAr6qooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFef/AB++Dul/tAfBvxZ8PtXk+z2muWTQJdbXb7NOpEkE+1XQv5cyRybNwDbNp4Jr5V/Zz/aIT9jX4Nw/DX9om18QeEbvwfenR9P8XT6ffano+uwSGWa2FpdRQsB5cP7sQvgqkaAYKyRxGo+D/En7Vv7VmkfFTxT4X8QeFfgx8H/Om0TTtb0e5h1TXtSXEzXlvaJGt0Ig0dsyqwff9njRYy0s6Rc/8HrjU4f+CoXxM+I0/g7xxZ+CfE/h+10fS9au/BurQQy3RTS02vvtgYVDW82ZJQiAISWAIJP27LjU/iF+0l+zfqfhvwd441nTfAXi2W58Q3lp4N1Z4bWJbywYyI/2bFwpW3mIaEuGCgjO5c/f+k6nDrWlWeoW6XEdvdwpPGl3bSW0yqyhgHikVXjbB5R1DKcggEEVboooooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFFFFFFFFFFFFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooooooooooooooor5V/4Kj/APJifxN/7hn/AKdLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/wDBUf8A5MT+Jv8A3DP/AE6Wleq/snf8ms/Bv/sTNG/9IYa9Vooooooooor4/wD2/v2k/in+yT4JtPHHhu68H6xouoa1b6RBo2qaFdG4g3200rSPdJfKsnzQNhRCmA4GSVy3qvxq8QfFP4Z/A/W/Fth4l8H3WteGNG1LV9SW48L3X2fUfIiaaKOFBqIa2+VCjMzzbidwCgbTlfsRfGLxx+0J8CdG+I/jKbw/H/bvnfZNM0LTJ7b7J5N1PA/mSy3M3nb/ACkYYWPb8wO/II+gKKKK+Vf+Co//ACYn8Tf+4Z/6dLSvVf2Tv+TWfg3/ANiZo3/pDDXqtFFFZPizxTpfgfwrrPiTW7r7Fouj2U2oX1z5byeTBFG0kj7UBZsKpOFBJxwCa+S/hn8RPjx+2l4N1Dxp4I8WaP8AA34fXOpsvhm6bQYtb1rUrWEyQzPdCSfyIVMqkhVQuChG7aoeboPBP7TnjjSv2gtd+AfxOg8P6V4+1Kyl1TwR4l0Sxnl0vVLXy5SpuLVrhpYpUMEzMhmVW8uRA64jkm5/4b/tHfGHxR+294u+BOp6l4HOm+FNMt9ZutYtPDd5HNfRMLJ3gRG1FhC228IEhMgBQEoc4B+1J+0d8YfgJ8aPhH4R0zUvA+p6b8SfEEmlWst34bvBNpUX2m1iRnK6iBcMFuxkgRAmM4C7sL9f6THfQ6VZx6ncW95qSwot1cWlu0EMsoUb3SNncopbJCl3IBALNjJ+C/8AgtX/AMms+Fv+xztf/SG+r1/9prQfjDD+zb8V5NT8deB7zTV8Jas11b2ngq8gmliFnLvRJG1ZwjFcgMUcAkEq2MHgP2ILPx7qX/BMPwlafDC/0fS/HdxDqUWmX2vK7Wlszavch5GCo5LLGXZAUZd4TcpXIrn/APhTf/BQz/ou3w//APAGH/5VUf8ACm/+Chn/AEXb4f8A/gDD/wDKqj/hTf8AwUM/6Lt8P/8AwBh/+VVH/Cm/+Chn/Rdvh/8A+AMP/wAqq8U/bM+Gn7ZPh/8AZs8YX/xW+LHg/wATeAYfsf8AaWl6XaRpcT5vIFi2EafERtmMTH94vCnr0PbfBH4T/t16l8F/AN34R+M/gfS/Cdx4f0+XR7G7s4mmtrJraMwRuTpjkssZRSd7cg/Metdr/wAKb/4KGf8ARdvh/wD+AMP/AMqqP+FN/wDBQz/ou3w//wDAGH/5VUf8Kb/4KGf9F2+H/wD4Aw//ACqroPh78J/269N8feGrvxd8Z/A+qeE7fU7aXWLG0s4lmubJZVM8aEaYhDNGHUHevJHzDrXa/wDBUf8A5MT+Jv8A3DP/AE6Wlelfsd6tY61+yh8HrjT7y3v7dPCWl2zS20qyKssVrHFLGSpIDJIjoy9VZWBwQRXyr/wUZ1axm/a8/Y30yO8t31K28Wpcz2ayqZoopNQ01Y5GTOVV2hlCsRgmNwPunGV4QsvFV9/wV++OMfhHWdH0PUh4StWkuNb0iXUoWi8jSMoI47q3IbcUO7eQACNpyCKn7cmm+ONP/am/Y8/4TLxD4f17f4zH2T+wtBn0zysX2mb/ADPNvbnzM5TGNm3a2d2Rt/SqvjX/AIKBfsz/ABh/a48PaZ4L8MDwPovhPTdTTVRqOrareG+upVt2jVfKjtCkKqZpwRvkL/uzmPDKfVfj54b+MPxQ+AuseEdA0PwPpfiHxNpl7pWqS6l4gvJrTT4pv3W6ApYq9wzQtJywhEb7eJQCDU/Yi+Dvjj9nv4E6N8OPGUPh+T+wvO+yanoWpz3P2vzrqed/MiltofJ2eaijDSbvmJ2YAP0BRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKyfFnhbS/HHhXWfDet2v23RdYsptPvrbzHj86CWNo5E3IQy5ViMqQRngg18wfAH9nn4w/sj2974M8Eap4X+JHwvaa4vtOt/Fmp3mlarpkssgxbrJFBcwvAqIXO2KIvLPK+EHDavwz/Zt8ep8XNQ+OfxS1Xwv4q+Kkfh9tE0LQNFtXtNF0hQ8jDy7qVJbgtLuO6bZujFxcIFlQoF4r4Sfs2fG/wAJ/treMfjp4ktfh/c2niuyXSJ9L0vXb5XsLUPaKsiF7HE8qQ2agqfKWR2JzGOAftQfs2fG/wCPXx9+FnjKwtfh/p/hv4b61/amn2Vzrt99s1LF1DKTM4sSkO9LWEBFWTYxkO+QEAfZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUV8q/8ABUf/AJMT+Jv/AHDP/TpaV6r+yd/yaz8G/wDsTNG/9IYa9Voooooooooooooooor5V/4Kj/8AJifxN/7hn/p0tK9V/ZO/5NZ+Df8A2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK5/x/wCAPD3xS8G6t4T8WaTb654e1WE295Y3IO2RcgggggqysAyupDKyqykEAjn/AAL4w+GnhnwrfeG/DHijw+mi/D+yTT9QtoNYin/sOC3jaMJdsZGaLYsDgmUg/unycg16BRRRXP8Ajb4heFfhrpUWp+LvEuj+FdNmmFtHea3fxWcLylWYRh5GUFiqOduc4Unsa6Ciiiiiiiiiiivzq+JV7/w3B+3/AK18EdS8V6ha/CPwLowvdX0LRNR/0fxDdRz2rSxXDRbSuyaeKNlYu0ZtJNhikkZk91/aK/4J+/Cb4v8Awj13w/4d8A+F/B/icwvcaPq+jadDprQ3qo3kiaSGIloGY7ZEKt8pJUB1Rl+YPiF8N/DfiT/gqX8C7LxJ8NvD+jf8JN4Ml1jxH4XltLa7t21KSDVZJjOVTy7mVZUUGYg7jGrdhXQf8Flfh74V0H9m3wTqemeGdH07UrLxBY6Ja3lpYRRTQaelneslojqoKwKwBEQO0EAgV9/+Cfh74V+GulS6Z4R8M6P4V02aY3MlnolhFZwvKVVTIUjVQWKog3YzhQOwryr9tz48zfs4/s0eMfGGn3FvB4hEK6fowmnjjY3s7CNHjWRWErRKXn8vadywMDgZYef/ALJP7LXgLXv2efBPij4h+HdH+KXjbxTpltr+qeJ/F+nJqd9O1xCjxRGW5MrhYYfJhAVgp8rdtUuwryq11ax/Zn/4KEJ8E3vLeb4K/FHw+01v4N1KVU0jRrqdrkGGCGYuhW4mhuF8iPykZr9V2N5SA8//AME7/hP4I1P9qb9qr7Z4N8P3f/CL+M4v7B8/S4H/ALI2X2pbPsmU/cbfKix5e3Hlp/dGD43fCfwRff8ABXT4SaJceDfD9xouueGbvUtV06XS4Gt9QumTV3a4njKbZZS0aMXcFiUU5yBX6P6TpNjoOlWemaZZW+nabZQpbWtnaRLFDBEihUjRFACqqgAKBgAACrdFFFFFFFfmr8OfC1v+yt/wVk8VPr1rqFh4b+KlleDw7rV/JD9nub65ltryeLzMqBi4jlgSPBkzLbAqRIrn9CvH/j/w98LfBureLPFmrW+h+HtKhM95fXJO2NcgAAAEszMQqooLMzKqgkgH4A+O+i+Hvil/wVg+A1prmh2+ueHtV8DPO+l+INMO2RfK1eWMTW1wgKsrBW2SIGVl5AI4yv8Agrt8Efh18Nf2bfDep+EfAHhfwrqU3i22tpLzRNGtrOZ4jZ3jGMvGikqWRDtzjKg9hX2p8b/DPxc8earpmi/Dfxvb/C7TbaFrzUPEs2i2+rTXcrNsitIIJZAFVVEskruoOTbCMtmYJ8lfF7Q/iX+1x/wT78faP4v8H/298U/AfiabTrK70YSxxa3Pp1wsFzqFrEVjEm6F72Ly1Vg0kb7EV9safSv7BPxM0P4ofsj/AAzu9En8z+yNGtdBvoHdDLb3VpCkEiuqM23dsEihsMY5Y2IG7FfNXxA8LaX+0h/wVk8E3mh2v/CWeG/hro0I8TX1nIy2+lalBLfTWsTygqGlW4e2PloWyUlVlIimC5X7Dfwn8EfFD9qb9sP/AITLwb4f8W/YfGZ+yf27pcF79n332p7/AC/NRtu7YmcYztXPQVb8X/D3wr8Nf+Cv3wO0zwj4Z0fwrps3hK6uZLPRLCKzheUwaupkKRqoLFUQbsZwoHYV+j9FFFFFFFFcV8Xvgv4K+PXg2Twr498P2/iLQnmjuRbzO8bRyoflkjkjZXjbBZdyMCVZlOVZgef8J/sv/Dnwb/YyWmkahqNponknSbDX9d1DV7PTXh2+RLa293PLFBLGFCpJGquillVgGIPP+Nv2I/g/8RvH0XjfxHoWsap4sgmFxa6tJ4q1ZZrNllaZBblboCBUkdmRIgqoT8oFavxU/ZM+Gfxv0rSNM8daXrHiTTdKhhhtbO78Tap5IMSuqTOi3IEs+2RwZ5A0rBiGc14B+0d+0V4H/Yf0rw38GPBuu3Hg7V9chWaPXPEEmo67aeFtMCmEXEccjTPK2Ldo4LRMRB13SbEz5nr/AOxf8SPhp4y+FY8O/CC31C58A+C/I0K2166tI7WLUpxAkszLGNkplBlVpXkhiDySsy7/AJiOr1L9l/4c33irVfElnpGoeGda1badTufCeu6hoX9oOJJJBLcrYzwrNLumlPmSBnO8/NjFdB4J+C/gr4a+AZfBfhHw/b+FfD00Jhkh0R3s5nJiWIzG4jZZTOURB5+/zcqDvyAa8/8ABP7Efwf+HPj6Xxv4c0LWNL8WTzG4utWj8Vas014zSrM4uC10ROryIrOkoZXI+YGjxt+xH8H/AIjePovG/iPQtY1TxZBMLi11aTxVqyzWbLK0yC3K3QECpI7MiRBVQn5QK9q0nTYdF0qz0+3e4kt7SFLeN7u5kuZmVVCgvLIzPI2By7sWY5JJJJq3RRRRRRRRRRRRRRRRRRRX/9k= width=95 height=243 />
   
  Refer to instructions. _____ a ketose and _____ an aldose with two chirality centers"

Answer to Question 23



Answer to Question 24

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+




anshika

  • Member
  • Posts: 510
Reply 2 on: Aug 23, 2018
Gracias!


mohan

  • Member
  • Posts: 362
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

Famous people who died from poisoning or drug overdose include, Adolf Hitler, Socrates, Juan Ponce de Leon, Marilyn Monroe, Judy Garland, and John Belushi.

Did you know?

Elderly adults are living longer, and causes of death are shifting. At the same time, autopsy rates are at or near their lowest in history.

Did you know?

Many medications that are used to treat infertility are injected subcutaneously. This is easy to do using the anterior abdomen as the site of injection but avoiding the area directly around the belly button.

Did you know?

Malaria mortality rates are falling. Increased malaria prevention and control measures have greatly improved these rates. Since 2000, malaria mortality rates have fallen globally by 60% among all age groups, and by 65% among children under age 5.

Did you know?

Though the United States has largely rejected the metric system, it is used for currency, as in 100 pennies = 1 dollar. Previously, the British currency system was used, with measurements such as 12 pence to the shilling, and 20 shillings to the pound.

For a complete list of videos, visit our video library