This topic contains a solution. Click here to go to the answer

Author Question: Which of the following has a D-configuration? a. only 1 and 2 b. only 1 and 3 ... (Read 20 times)

anshika

  • Hero Member
  • *****
  • Posts: 510

Which of the following has a D-configuration?
 
   


   
  a.
  only 1 and 2
   
  b.
  only 1 and 3
   
  c.
  only 2 and 3
   
  d.
  only 1, 2 and 3

Question 2

What is the relationship between D-erythrose and D-threose?
 
   


   
  a.
  they are constitutional isomers
   
  b.
  they are enantiomers
   
  c.
  they are diastereomers
   
  d.
  they are tautomers

Question 3

Which reagent would be best suited for the transformation shown?
 
   


   
  a.
  alkaline Cu2+ in H2O
   
  b.
  Ag+ in H2O/NH3
   
  c.
  H2, with Ni catalyst
   
  d.
  NaNO3 at 0C
   
  e.
  NaBH4 in H2O

Question 4

The monosaccharide shown below is
 
   


   
  a.
  an aldohexose
   
  b.
  an aldopentose
   
  c.
  an aldotetrose
   
  d.
  a ketohexose
   
  e.
  a ketopentose

Question 5

What is the correct structure for -D-glucopyranose?
   
  a.
 
   
  b.
 
   
  c.
 
   
  d.
 

Question 6

Instructions: Refer to D-iodose below to answer the following question(s).
 
   




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

nathang24

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1

b

Answer to Question 2

c

Answer to Question 3

b

Answer to Question 4

b

Answer to Question 5

a

Answer to Question 6

d

Answer to Question 7

c

Answer to Question 8

a)
b


b)
b

Answer to Question 9

a)
a


b)
The production of a silver mirror which is an indication of a positive test for a reducing sugar (aldose).

Answer to Question 10

a)
a


b)
-anomer

Answer to Question 11

a)



b)
The two anomeric forms differ in the position of the OH group on the C1 carbon relative to the OH at the lowest chirality center in the Fisher projection. If these two OH groups are cis, the anomer is , if they are trans the anomer is .

Answer to Question 12



Answer to Question 13

b

Answer to Question 14

c

Answer to Question 15

Z

Answer to Question 16



Answer to Question 17



Answer to Question 18



Answer to Question 19



Answer to Question 20



Answer to Question 21



Answer to Question 22

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+LPDOs6fpVjb+DtXe4ac28kKpNELXfbbndQpnEYYHcpKgmuV/4JoQ6h4a/ZP8J+Ddd0DxB4c8SaD9r+32Wu6Heaft8+/upYvLeeJEmyhUny2bbuUNtJAr6qooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFef/AB++Dul/tAfBvxZ8PtXk+z2muWTQJdbXb7NOpEkE+1XQv5cyRybNwDbNp4Jr5V/Zz/aIT9jX4Nw/DX9om18QeEbvwfenR9P8XT6ffano+uwSGWa2FpdRQsB5cP7sQvgqkaAYKyRxGo+D/En7Vv7VmkfFTxT4X8QeFfgx8H/Om0TTtb0e5h1TXtSXEzXlvaJGt0Ig0dsyqwff9njRYy0s6Rc/8HrjU4f+CoXxM+I0/g7xxZ+CfE/h+10fS9au/BurQQy3RTS02vvtgYVDW82ZJQiAISWAIJP27LjU/iF+0l+zfqfhvwd441nTfAXi2W58Q3lp4N1Z4bWJbywYyI/2bFwpW3mIaEuGCgjO5c/f+k6nDrWlWeoW6XEdvdwpPGl3bSW0yqyhgHikVXjbB5R1DKcggEEVboooooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFFFFFFFFFFFFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooooooooooooooor5V/4Kj/APJifxN/7hn/AKdLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/wDBUf8A5MT+Jv8A3DP/AE6Wleq/snf8ms/Bv/sTNG/9IYa9Vooooooooor4/wD2/v2k/in+yT4JtPHHhu68H6xouoa1b6RBo2qaFdG4g3200rSPdJfKsnzQNhRCmA4GSVy3qvxq8QfFP4Z/A/W/Fth4l8H3WteGNG1LV9SW48L3X2fUfIiaaKOFBqIa2+VCjMzzbidwCgbTlfsRfGLxx+0J8CdG+I/jKbw/H/bvnfZNM0LTJ7b7J5N1PA/mSy3M3nb/ACkYYWPb8wO/II+gKKKK+Vf+Co//ACYn8Tf+4Z/6dLSvVf2Tv+TWfg3/ANiZo3/pDDXqtFFFZPizxTpfgfwrrPiTW7r7Fouj2U2oX1z5byeTBFG0kj7UBZsKpOFBJxwCa+S/hn8RPjx+2l4N1Dxp4I8WaP8AA34fXOpsvhm6bQYtb1rUrWEyQzPdCSfyIVMqkhVQuChG7aoeboPBP7TnjjSv2gtd+AfxOg8P6V4+1Kyl1TwR4l0Sxnl0vVLXy5SpuLVrhpYpUMEzMhmVW8uRA64jkm5/4b/tHfGHxR+294u+BOp6l4HOm+FNMt9ZutYtPDd5HNfRMLJ3gRG1FhC228IEhMgBQEoc4B+1J+0d8YfgJ8aPhH4R0zUvA+p6b8SfEEmlWst34bvBNpUX2m1iRnK6iBcMFuxkgRAmM4C7sL9f6THfQ6VZx6ncW95qSwot1cWlu0EMsoUb3SNncopbJCl3IBALNjJ+C/8AgtX/AMms+Fv+xztf/SG+r1/9prQfjDD+zb8V5NT8deB7zTV8Jas11b2ngq8gmliFnLvRJG1ZwjFcgMUcAkEq2MHgP2ILPx7qX/BMPwlafDC/0fS/HdxDqUWmX2vK7Wlszavch5GCo5LLGXZAUZd4TcpXIrn/APhTf/BQz/ou3w//APAGH/5VUf8ACm/+Chn/AEXb4f8A/gDD/wDKqj/hTf8AwUM/6Lt8P/8AwBh/+VVH/Cm/+Chn/Rdvh/8A+AMP/wAqq8U/bM+Gn7ZPh/8AZs8YX/xW+LHg/wATeAYfsf8AaWl6XaRpcT5vIFi2EafERtmMTH94vCnr0PbfBH4T/t16l8F/AN34R+M/gfS/Cdx4f0+XR7G7s4mmtrJraMwRuTpjkssZRSd7cg/Metdr/wAKb/4KGf8ARdvh/wD+AMP/AMqqP+FN/wDBQz/ou3w//wDAGH/5VUf8Kb/4KGf9F2+H/wD4Aw//ACqroPh78J/269N8feGrvxd8Z/A+qeE7fU7aXWLG0s4lmubJZVM8aEaYhDNGHUHevJHzDrXa/wDBUf8A5MT+Jv8A3DP/AE6Wlelfsd6tY61+yh8HrjT7y3v7dPCWl2zS20qyKssVrHFLGSpIDJIjoy9VZWBwQRXyr/wUZ1axm/a8/Y30yO8t31K28Wpcz2ayqZoopNQ01Y5GTOVV2hlCsRgmNwPunGV4QsvFV9/wV++OMfhHWdH0PUh4StWkuNb0iXUoWi8jSMoI47q3IbcUO7eQACNpyCKn7cmm+ONP/am/Y8/4TLxD4f17f4zH2T+wtBn0zysX2mb/ADPNvbnzM5TGNm3a2d2Rt/SqvjX/AIKBfsz/ABh/a48PaZ4L8MDwPovhPTdTTVRqOrareG+upVt2jVfKjtCkKqZpwRvkL/uzmPDKfVfj54b+MPxQ+AuseEdA0PwPpfiHxNpl7pWqS6l4gvJrTT4pv3W6ApYq9wzQtJywhEb7eJQCDU/Yi+Dvjj9nv4E6N8OPGUPh+T+wvO+yanoWpz3P2vzrqed/MiltofJ2eaijDSbvmJ2YAP0BRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKyfFnhbS/HHhXWfDet2v23RdYsptPvrbzHj86CWNo5E3IQy5ViMqQRngg18wfAH9nn4w/sj2974M8Eap4X+JHwvaa4vtOt/Fmp3mlarpkssgxbrJFBcwvAqIXO2KIvLPK+EHDavwz/Zt8ep8XNQ+OfxS1Xwv4q+Kkfh9tE0LQNFtXtNF0hQ8jDy7qVJbgtLuO6bZujFxcIFlQoF4r4Sfs2fG/wAJ/treMfjp4ktfh/c2niuyXSJ9L0vXb5XsLUPaKsiF7HE8qQ2agqfKWR2JzGOAftQfs2fG/wCPXx9+FnjKwtfh/p/hv4b61/amn2Vzrt99s1LF1DKTM4sSkO9LWEBFWTYxkO+QEAfZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUV8q/8ABUf/AJMT+Jv/AHDP/TpaV6r+yd/yaz8G/wDsTNG/9IYa9Voooooooooooooooor5V/4Kj/8AJifxN/7hn/p0tK9V/ZO/5NZ+Df8A2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK5/x/wCAPD3xS8G6t4T8WaTb654e1WE295Y3IO2RcgggggqysAyupDKyqykEAjn/AAL4w+GnhnwrfeG/DHijw+mi/D+yTT9QtoNYin/sOC3jaMJdsZGaLYsDgmUg/unycg16BRRRXP8Ajb4heFfhrpUWp+LvEuj+FdNmmFtHea3fxWcLylWYRh5GUFiqOduc4Unsa6Ciiiiiiiiiiivzq+JV7/w3B+3/AK18EdS8V6ha/CPwLowvdX0LRNR/0fxDdRz2rSxXDRbSuyaeKNlYu0ZtJNhikkZk91/aK/4J+/Cb4v8Awj13w/4d8A+F/B/icwvcaPq+jadDprQ3qo3kiaSGIloGY7ZEKt8pJUB1Rl+YPiF8N/DfiT/gqX8C7LxJ8NvD+jf8JN4Ml1jxH4XltLa7t21KSDVZJjOVTy7mVZUUGYg7jGrdhXQf8Flfh74V0H9m3wTqemeGdH07UrLxBY6Ja3lpYRRTQaelneslojqoKwKwBEQO0EAgV9/+Cfh74V+GulS6Z4R8M6P4V02aY3MlnolhFZwvKVVTIUjVQWKog3YzhQOwryr9tz48zfs4/s0eMfGGn3FvB4hEK6fowmnjjY3s7CNHjWRWErRKXn8vadywMDgZYef/ALJP7LXgLXv2efBPij4h+HdH+KXjbxTpltr+qeJ/F+nJqd9O1xCjxRGW5MrhYYfJhAVgp8rdtUuwryq11ax/Zn/4KEJ8E3vLeb4K/FHw+01v4N1KVU0jRrqdrkGGCGYuhW4mhuF8iPykZr9V2N5SA8//AME7/hP4I1P9qb9qr7Z4N8P3f/CL+M4v7B8/S4H/ALI2X2pbPsmU/cbfKix5e3Hlp/dGD43fCfwRff8ABXT4SaJceDfD9xouueGbvUtV06XS4Gt9QumTV3a4njKbZZS0aMXcFiUU5yBX6P6TpNjoOlWemaZZW+nabZQpbWtnaRLFDBEihUjRFACqqgAKBgAACrdFFFFFFFfmr8OfC1v+yt/wVk8VPr1rqFh4b+KlleDw7rV/JD9nub65ltryeLzMqBi4jlgSPBkzLbAqRIrn9CvH/j/w98LfBureLPFmrW+h+HtKhM95fXJO2NcgAAAEszMQqooLMzKqgkgH4A+O+i+Hvil/wVg+A1prmh2+ueHtV8DPO+l+INMO2RfK1eWMTW1wgKsrBW2SIGVl5AI4yv8Agrt8Efh18Nf2bfDep+EfAHhfwrqU3i22tpLzRNGtrOZ4jZ3jGMvGikqWRDtzjKg9hX2p8b/DPxc8earpmi/Dfxvb/C7TbaFrzUPEs2i2+rTXcrNsitIIJZAFVVEskruoOTbCMtmYJ8lfF7Q/iX+1x/wT78faP4v8H/298U/AfiabTrK70YSxxa3Pp1wsFzqFrEVjEm6F72Ly1Vg0kb7EV9safSv7BPxM0P4ofsj/AAzu9En8z+yNGtdBvoHdDLb3VpCkEiuqM23dsEihsMY5Y2IG7FfNXxA8LaX+0h/wVk8E3mh2v/CWeG/hro0I8TX1nIy2+lalBLfTWsTygqGlW4e2PloWyUlVlIimC5X7Dfwn8EfFD9qb9sP/AITLwb4f8W/YfGZ+yf27pcF79n332p7/AC/NRtu7YmcYztXPQVb8X/D3wr8Nf+Cv3wO0zwj4Z0fwrps3hK6uZLPRLCKzheUwaupkKRqoLFUQbsZwoHYV+j9FFFFFFFFcV8Xvgv4K+PXg2Twr498P2/iLQnmjuRbzO8bRyoflkjkjZXjbBZdyMCVZlOVZgef8J/sv/Dnwb/YyWmkahqNponknSbDX9d1DV7PTXh2+RLa293PLFBLGFCpJGquillVgGIPP+Nv2I/g/8RvH0XjfxHoWsap4sgmFxa6tJ4q1ZZrNllaZBblboCBUkdmRIgqoT8oFavxU/ZM+Gfxv0rSNM8daXrHiTTdKhhhtbO78Tap5IMSuqTOi3IEs+2RwZ5A0rBiGc14B+0d+0V4H/Yf0rw38GPBuu3Hg7V9chWaPXPEEmo67aeFtMCmEXEccjTPK2Ldo4LRMRB13SbEz5nr/AOxf8SPhp4y+FY8O/CC31C58A+C/I0K2166tI7WLUpxAkszLGNkplBlVpXkhiDySsy7/AJiOr1L9l/4c33irVfElnpGoeGda1badTufCeu6hoX9oOJJJBLcrYzwrNLumlPmSBnO8/NjFdB4J+C/gr4a+AZfBfhHw/b+FfD00Jhkh0R3s5nJiWIzG4jZZTOURB5+/zcqDvyAa8/8ABP7Efwf+HPj6Xxv4c0LWNL8WTzG4utWj8Vas014zSrM4uC10ROryIrOkoZXI+YGjxt+xH8H/AIjePovG/iPQtY1TxZBMLi11aTxVqyzWbLK0yC3K3QECpI7MiRBVQn5QK9q0nTYdF0qz0+3e4kt7SFLeN7u5kuZmVVCgvLIzPI2By7sWY5JJJJq3RRRRRRRRRRRRRRRRRRRX/9k= width=95 height=243 />
   
  Refer to instructions. _____ a ketose and _____ an aldose with two chirality centers"

Answer to Question 23



Answer to Question 24

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+




anshika

  • Member
  • Posts: 510
Reply 2 on: Aug 23, 2018
Thanks for the timely response, appreciate it


kishoreddi

  • Member
  • Posts: 329
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

The heart is located in the center of the chest, with part of it tipped slightly so that it taps against the left side of the chest.

Did you know?

Cancer has been around as long as humankind, but only in the second half of the twentieth century did the number of cancer cases explode.

Did you know?

The longest a person has survived after a heart transplant is 24 years.

Did you know?

Acetaminophen (Tylenol) in overdose can seriously damage the liver. It should never be taken by people who use alcohol heavily; it can result in severe liver damage and even a condition requiring a liver transplant.

Did you know?

The liver is the only organ that has the ability to regenerate itself after certain types of damage. As much as 25% of the liver can be removed, and it will still regenerate back to its original shape and size. However, the liver cannot regenerate after severe damage caused by alcohol.

For a complete list of videos, visit our video library