Answer to Question 1b
Answer to Question 2c
Answer to Question 3b
Answer to Question 4b
Answer to Question 5a
Answer to Question 6d
Answer to Question 7c
Answer to Question 8a)
b
b)
b
Answer to Question 9a)
a
b)
The production of a silver mirror which is an indication of a positive test for a reducing sugar (aldose).
Answer to Question 10a)
a
b)
-anomer
Answer to Question 11a)
b)
The two anomeric forms differ in the position of the OH group on the C1 carbon relative to the OH at the lowest chirality center in the Fisher projection. If these two OH groups are
cis, the anomer is , if they are
trans the anomer is .
Answer to Question 12Answer to Question 13b
Answer to Question 14c
Answer to Question 15Z
Answer to Question 16Answer to Question 17Answer to Question 18Answer to Question 19Answer to Question 20Answer to Question 21Answer to Question 22/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+LPDOs6fpVjb+DtXe4ac28kKpNELXfbbndQpnEYYHcpKgmuV/4JoQ6h4a/ZP8J+Ddd0DxB4c8SaD9r+32Wu6Heaft8+/upYvLeeJEmyhUny2bbuUNtJAr6qooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFef/AB++Dul/tAfBvxZ8PtXk+z2muWTQJdbXb7NOpEkE+1XQv5cyRybNwDbNp4Jr5V/Zz/aIT9jX4Nw/DX9om18QeEbvwfenR9P8XT6ffano+uwSGWa2FpdRQsB5cP7sQvgqkaAYKyRxGo+D/En7Vv7VmkfFTxT4X8QeFfgx8H/Om0TTtb0e5h1TXtSXEzXlvaJGt0Ig0dsyqwff9njRYy0s6Rc/8HrjU4f+CoXxM+I0/g7xxZ+CfE/h+10fS9au/BurQQy3RTS02vvtgYVDW82ZJQiAISWAIJP27LjU/iF+0l+zfqfhvwd441nTfAXi2W58Q3lp4N1Z4bWJbywYyI/2bFwpW3mIaEuGCgjO5c/f+k6nDrWlWeoW6XEdvdwpPGl3bSW0yqyhgHikVXjbB5R1DKcggEEVboooooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFFFFFFFFFFFFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooooooooooooooor5V/4Kj/APJifxN/7hn/AKdLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/wDBUf8A5MT+Jv8A3DP/AE6Wleq/snf8ms/Bv/sTNG/9IYa9Vooooooooor4/wD2/v2k/in+yT4JtPHHhu68H6xouoa1b6RBo2qaFdG4g3200rSPdJfKsnzQNhRCmA4GSVy3qvxq8QfFP4Z/A/W/Fth4l8H3WteGNG1LV9SW48L3X2fUfIiaaKOFBqIa2+VCjMzzbidwCgbTlfsRfGLxx+0J8CdG+I/jKbw/H/bvnfZNM0LTJ7b7J5N1PA/mSy3M3nb/ACkYYWPb8wO/II+gKKKK+Vf+Co//ACYn8Tf+4Z/6dLSvVf2Tv+TWfg3/ANiZo3/pDDXqtFFFZPizxTpfgfwrrPiTW7r7Fouj2U2oX1z5byeTBFG0kj7UBZsKpOFBJxwCa+S/hn8RPjx+2l4N1Dxp4I8WaP8AA34fXOpsvhm6bQYtb1rUrWEyQzPdCSfyIVMqkhVQuChG7aoeboPBP7TnjjSv2gtd+AfxOg8P6V4+1Kyl1TwR4l0Sxnl0vVLXy5SpuLVrhpYpUMEzMhmVW8uRA64jkm5/4b/tHfGHxR+294u+BOp6l4HOm+FNMt9ZutYtPDd5HNfRMLJ3gRG1FhC228IEhMgBQEoc4B+1J+0d8YfgJ8aPhH4R0zUvA+p6b8SfEEmlWst34bvBNpUX2m1iRnK6iBcMFuxkgRAmM4C7sL9f6THfQ6VZx6ncW95qSwot1cWlu0EMsoUb3SNncopbJCl3IBALNjJ+C/8AgtX/AMms+Fv+xztf/SG+r1/9prQfjDD+zb8V5NT8deB7zTV8Jas11b2ngq8gmliFnLvRJG1ZwjFcgMUcAkEq2MHgP2ILPx7qX/BMPwlafDC/0fS/HdxDqUWmX2vK7Wlszavch5GCo5LLGXZAUZd4TcpXIrn/APhTf/BQz/ou3w//APAGH/5VUf8ACm/+Chn/AEXb4f8A/gDD/wDKqj/hTf8AwUM/6Lt8P/8AwBh/+VVH/Cm/+Chn/Rdvh/8A+AMP/wAqq8U/bM+Gn7ZPh/8AZs8YX/xW+LHg/wATeAYfsf8AaWl6XaRpcT5vIFi2EafERtmMTH94vCnr0PbfBH4T/t16l8F/AN34R+M/gfS/Cdx4f0+XR7G7s4mmtrJraMwRuTpjkssZRSd7cg/Metdr/wAKb/4KGf8ARdvh/wD+AMP/AMqqP+FN/wDBQz/ou3w//wDAGH/5VUf8Kb/4KGf9F2+H/wD4Aw//ACqroPh78J/269N8feGrvxd8Z/A+qeE7fU7aXWLG0s4lmubJZVM8aEaYhDNGHUHevJHzDrXa/wDBUf8A5MT+Jv8A3DP/AE6Wlelfsd6tY61+yh8HrjT7y3v7dPCWl2zS20qyKssVrHFLGSpIDJIjoy9VZWBwQRXyr/wUZ1axm/a8/Y30yO8t31K28Wpcz2ayqZoopNQ01Y5GTOVV2hlCsRgmNwPunGV4QsvFV9/wV++OMfhHWdH0PUh4StWkuNb0iXUoWi8jSMoI47q3IbcUO7eQACNpyCKn7cmm+ONP/am/Y8/4TLxD4f17f4zH2T+wtBn0zysX2mb/ADPNvbnzM5TGNm3a2d2Rt/SqvjX/AIKBfsz/ABh/a48PaZ4L8MDwPovhPTdTTVRqOrareG+upVt2jVfKjtCkKqZpwRvkL/uzmPDKfVfj54b+MPxQ+AuseEdA0PwPpfiHxNpl7pWqS6l4gvJrTT4pv3W6ApYq9wzQtJywhEb7eJQCDU/Yi+Dvjj9nv4E6N8OPGUPh+T+wvO+yanoWpz3P2vzrqed/MiltofJ2eaijDSbvmJ2YAP0BRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKyfFnhbS/HHhXWfDet2v23RdYsptPvrbzHj86CWNo5E3IQy5ViMqQRngg18wfAH9nn4w/sj2974M8Eap4X+JHwvaa4vtOt/Fmp3mlarpkssgxbrJFBcwvAqIXO2KIvLPK+EHDavwz/Zt8ep8XNQ+OfxS1Xwv4q+Kkfh9tE0LQNFtXtNF0hQ8jDy7qVJbgtLuO6bZujFxcIFlQoF4r4Sfs2fG/wAJ/treMfjp4ktfh/c2niuyXSJ9L0vXb5XsLUPaKsiF7HE8qQ2agqfKWR2JzGOAftQfs2fG/wCPXx9+FnjKwtfh/p/hv4b61/amn2Vzrt99s1LF1DKTM4sSkO9LWEBFWTYxkO+QEAfZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUV8q/8ABUf/AJMT+Jv/AHDP/TpaV6r+yd/yaz8G/wDsTNG/9IYa9Voooooooooooooooor5V/4Kj/8AJifxN/7hn/p0tK9V/ZO/5NZ+Df8A2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK5/x/wCAPD3xS8G6t4T8WaTb654e1WE295Y3IO2RcgggggqysAyupDKyqykEAjn/AAL4w+GnhnwrfeG/DHijw+mi/D+yTT9QtoNYin/sOC3jaMJdsZGaLYsDgmUg/unycg16BRRRXP8Ajb4heFfhrpUWp+LvEuj+FdNmmFtHea3fxWcLylWYRh5GUFiqOduc4Unsa6Ciiiiiiiiiiivzq+JV7/w3B+3/AK18EdS8V6ha/CPwLowvdX0LRNR/0fxDdRz2rSxXDRbSuyaeKNlYu0ZtJNhikkZk91/aK/4J+/Cb4v8Awj13w/4d8A+F/B/icwvcaPq+jadDprQ3qo3kiaSGIloGY7ZEKt8pJUB1Rl+YPiF8N/DfiT/gqX8C7LxJ8NvD+jf8JN4Ml1jxH4XltLa7t21KSDVZJjOVTy7mVZUUGYg7jGrdhXQf8Flfh74V0H9m3wTqemeGdH07UrLxBY6Ja3lpYRRTQaelneslojqoKwKwBEQO0EAgV9/+Cfh74V+GulS6Z4R8M6P4V02aY3MlnolhFZwvKVVTIUjVQWKog3YzhQOwryr9tz48zfs4/s0eMfGGn3FvB4hEK6fowmnjjY3s7CNHjWRWErRKXn8vadywMDgZYef/ALJP7LXgLXv2efBPij4h+HdH+KXjbxTpltr+qeJ/F+nJqd9O1xCjxRGW5MrhYYfJhAVgp8rdtUuwryq11ax/Zn/4KEJ8E3vLeb4K/FHw+01v4N1KVU0jRrqdrkGGCGYuhW4mhuF8iPykZr9V2N5SA8//AME7/hP4I1P9qb9qr7Z4N8P3f/CL+M4v7B8/S4H/ALI2X2pbPsmU/cbfKix5e3Hlp/dGD43fCfwRff8ABXT4SaJceDfD9xouueGbvUtV06XS4Gt9QumTV3a4njKbZZS0aMXcFiUU5yBX6P6TpNjoOlWemaZZW+nabZQpbWtnaRLFDBEihUjRFACqqgAKBgAACrdFFFFFFFfmr8OfC1v+yt/wVk8VPr1rqFh4b+KlleDw7rV/JD9nub65ltryeLzMqBi4jlgSPBkzLbAqRIrn9CvH/j/w98LfBureLPFmrW+h+HtKhM95fXJO2NcgAAAEszMQqooLMzKqgkgH4A+O+i+Hvil/wVg+A1prmh2+ueHtV8DPO+l+INMO2RfK1eWMTW1wgKsrBW2SIGVl5AI4yv8Agrt8Efh18Nf2bfDep+EfAHhfwrqU3i22tpLzRNGtrOZ4jZ3jGMvGikqWRDtzjKg9hX2p8b/DPxc8earpmi/Dfxvb/C7TbaFrzUPEs2i2+rTXcrNsitIIJZAFVVEskruoOTbCMtmYJ8lfF7Q/iX+1x/wT78faP4v8H/298U/AfiabTrK70YSxxa3Pp1wsFzqFrEVjEm6F72Ly1Vg0kb7EV9safSv7BPxM0P4ofsj/AAzu9En8z+yNGtdBvoHdDLb3VpCkEiuqM23dsEihsMY5Y2IG7FfNXxA8LaX+0h/wVk8E3mh2v/CWeG/hro0I8TX1nIy2+lalBLfTWsTygqGlW4e2PloWyUlVlIimC5X7Dfwn8EfFD9qb9sP/AITLwb4f8W/YfGZ+yf27pcF79n332p7/AC/NRtu7YmcYztXPQVb8X/D3wr8Nf+Cv3wO0zwj4Z0fwrps3hK6uZLPRLCKzheUwaupkKRqoLFUQbsZwoHYV+j9FFFFFFFFcV8Xvgv4K+PXg2Twr498P2/iLQnmjuRbzO8bRyoflkjkjZXjbBZdyMCVZlOVZgef8J/sv/Dnwb/YyWmkahqNponknSbDX9d1DV7PTXh2+RLa293PLFBLGFCpJGquillVgGIPP+Nv2I/g/8RvH0XjfxHoWsap4sgmFxa6tJ4q1ZZrNllaZBblboCBUkdmRIgqoT8oFavxU/ZM+Gfxv0rSNM8daXrHiTTdKhhhtbO78Tap5IMSuqTOi3IEs+2RwZ5A0rBiGc14B+0d+0V4H/Yf0rw38GPBuu3Hg7V9chWaPXPEEmo67aeFtMCmEXEccjTPK2Ldo4LRMRB13SbEz5nr/AOxf8SPhp4y+FY8O/CC31C58A+C/I0K2166tI7WLUpxAkszLGNkplBlVpXkhiDySsy7/AJiOr1L9l/4c33irVfElnpGoeGda1badTufCeu6hoX9oOJJJBLcrYzwrNLumlPmSBnO8/NjFdB4J+C/gr4a+AZfBfhHw/b+FfD00Jhkh0R3s5nJiWIzG4jZZTOURB5+/zcqDvyAa8/8ABP7Efwf+HPj6Xxv4c0LWNL8WTzG4utWj8Vas014zSrM4uC10ROryIrOkoZXI+YGjxt+xH8H/AIjePovG/iPQtY1TxZBMLi11aTxVqyzWbLK0yC3K3QECpI7MiRBVQn5QK9q0nTYdF0qz0+3e4kt7SFLeN7u5kuZmVVCgvLIzPI2By7sWY5JJJJq3RRRRRRRRRRRRRRRRRRRX/9k= width=95 height=243 />
Refer to instructions. _____ a ketose and _____ an aldose with two chirality centers"
Answer to Question 23Answer to Question 24/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+