This topic contains a solution. Click here to go to the answer

Author Question: Which of the following has a D-configuration? a. only 1 and 2 b. only 1 and 3 ... (Read 21 times)

anshika

  • Hero Member
  • *****
  • Posts: 510

Which of the following has a D-configuration?
 
   


   
  a.
  only 1 and 2
   
  b.
  only 1 and 3
   
  c.
  only 2 and 3
   
  d.
  only 1, 2 and 3

Question 2

What is the relationship between D-erythrose and D-threose?
 
   


   
  a.
  they are constitutional isomers
   
  b.
  they are enantiomers
   
  c.
  they are diastereomers
   
  d.
  they are tautomers

Question 3

Which reagent would be best suited for the transformation shown?
 
   


   
  a.
  alkaline Cu2+ in H2O
   
  b.
  Ag+ in H2O/NH3
   
  c.
  H2, with Ni catalyst
   
  d.
  NaNO3 at 0C
   
  e.
  NaBH4 in H2O

Question 4

The monosaccharide shown below is
 
   


   
  a.
  an aldohexose
   
  b.
  an aldopentose
   
  c.
  an aldotetrose
   
  d.
  a ketohexose
   
  e.
  a ketopentose

Question 5

What is the correct structure for -D-glucopyranose?
   
  a.
 
   
  b.
 
   
  c.
 
   
  d.
 

Question 6

Instructions: Refer to D-iodose below to answer the following question(s).
 
   




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

nathang24

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1

b

Answer to Question 2

c

Answer to Question 3

b

Answer to Question 4

b

Answer to Question 5

a

Answer to Question 6

d

Answer to Question 7

c

Answer to Question 8

a)
b


b)
b

Answer to Question 9

a)
a


b)
The production of a silver mirror which is an indication of a positive test for a reducing sugar (aldose).

Answer to Question 10

a)
a


b)
-anomer

Answer to Question 11

a)



b)
The two anomeric forms differ in the position of the OH group on the C1 carbon relative to the OH at the lowest chirality center in the Fisher projection. If these two OH groups are cis, the anomer is , if they are trans the anomer is .

Answer to Question 12



Answer to Question 13

b

Answer to Question 14

c

Answer to Question 15

Z

Answer to Question 16



Answer to Question 17



Answer to Question 18



Answer to Question 19



Answer to Question 20



Answer to Question 21



Answer to Question 22

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+LPDOs6fpVjb+DtXe4ac28kKpNELXfbbndQpnEYYHcpKgmuV/4JoQ6h4a/ZP8J+Ddd0DxB4c8SaD9r+32Wu6Heaft8+/upYvLeeJEmyhUny2bbuUNtJAr6qooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFef/AB++Dul/tAfBvxZ8PtXk+z2muWTQJdbXb7NOpEkE+1XQv5cyRybNwDbNp4Jr5V/Zz/aIT9jX4Nw/DX9om18QeEbvwfenR9P8XT6ffano+uwSGWa2FpdRQsB5cP7sQvgqkaAYKyRxGo+D/En7Vv7VmkfFTxT4X8QeFfgx8H/Om0TTtb0e5h1TXtSXEzXlvaJGt0Ig0dsyqwff9njRYy0s6Rc/8HrjU4f+CoXxM+I0/g7xxZ+CfE/h+10fS9au/BurQQy3RTS02vvtgYVDW82ZJQiAISWAIJP27LjU/iF+0l+zfqfhvwd441nTfAXi2W58Q3lp4N1Z4bWJbywYyI/2bFwpW3mIaEuGCgjO5c/f+k6nDrWlWeoW6XEdvdwpPGl3bSW0yqyhgHikVXjbB5R1DKcggEEVboooooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFFFFFFFFFFFFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooooooooooooooor5V/4Kj/APJifxN/7hn/AKdLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/wDBUf8A5MT+Jv8A3DP/AE6Wleq/snf8ms/Bv/sTNG/9IYa9Vooooooooor4/wD2/v2k/in+yT4JtPHHhu68H6xouoa1b6RBo2qaFdG4g3200rSPdJfKsnzQNhRCmA4GSVy3qvxq8QfFP4Z/A/W/Fth4l8H3WteGNG1LV9SW48L3X2fUfIiaaKOFBqIa2+VCjMzzbidwCgbTlfsRfGLxx+0J8CdG+I/jKbw/H/bvnfZNM0LTJ7b7J5N1PA/mSy3M3nb/ACkYYWPb8wO/II+gKKKK+Vf+Co//ACYn8Tf+4Z/6dLSvVf2Tv+TWfg3/ANiZo3/pDDXqtFFFZPizxTpfgfwrrPiTW7r7Fouj2U2oX1z5byeTBFG0kj7UBZsKpOFBJxwCa+S/hn8RPjx+2l4N1Dxp4I8WaP8AA34fXOpsvhm6bQYtb1rUrWEyQzPdCSfyIVMqkhVQuChG7aoeboPBP7TnjjSv2gtd+AfxOg8P6V4+1Kyl1TwR4l0Sxnl0vVLXy5SpuLVrhpYpUMEzMhmVW8uRA64jkm5/4b/tHfGHxR+294u+BOp6l4HOm+FNMt9ZutYtPDd5HNfRMLJ3gRG1FhC228IEhMgBQEoc4B+1J+0d8YfgJ8aPhH4R0zUvA+p6b8SfEEmlWst34bvBNpUX2m1iRnK6iBcMFuxkgRAmM4C7sL9f6THfQ6VZx6ncW95qSwot1cWlu0EMsoUb3SNncopbJCl3IBALNjJ+C/8AgtX/AMms+Fv+xztf/SG+r1/9prQfjDD+zb8V5NT8deB7zTV8Jas11b2ngq8gmliFnLvRJG1ZwjFcgMUcAkEq2MHgP2ILPx7qX/BMPwlafDC/0fS/HdxDqUWmX2vK7Wlszavch5GCo5LLGXZAUZd4TcpXIrn/APhTf/BQz/ou3w//APAGH/5VUf8ACm/+Chn/AEXb4f8A/gDD/wDKqj/hTf8AwUM/6Lt8P/8AwBh/+VVH/Cm/+Chn/Rdvh/8A+AMP/wAqq8U/bM+Gn7ZPh/8AZs8YX/xW+LHg/wATeAYfsf8AaWl6XaRpcT5vIFi2EafERtmMTH94vCnr0PbfBH4T/t16l8F/AN34R+M/gfS/Cdx4f0+XR7G7s4mmtrJraMwRuTpjkssZRSd7cg/Metdr/wAKb/4KGf8ARdvh/wD+AMP/AMqqP+FN/wDBQz/ou3w//wDAGH/5VUf8Kb/4KGf9F2+H/wD4Aw//ACqroPh78J/269N8feGrvxd8Z/A+qeE7fU7aXWLG0s4lmubJZVM8aEaYhDNGHUHevJHzDrXa/wDBUf8A5MT+Jv8A3DP/AE6Wlelfsd6tY61+yh8HrjT7y3v7dPCWl2zS20qyKssVrHFLGSpIDJIjoy9VZWBwQRXyr/wUZ1axm/a8/Y30yO8t31K28Wpcz2ayqZoopNQ01Y5GTOVV2hlCsRgmNwPunGV4QsvFV9/wV++OMfhHWdH0PUh4StWkuNb0iXUoWi8jSMoI47q3IbcUO7eQACNpyCKn7cmm+ONP/am/Y8/4TLxD4f17f4zH2T+wtBn0zysX2mb/ADPNvbnzM5TGNm3a2d2Rt/SqvjX/AIKBfsz/ABh/a48PaZ4L8MDwPovhPTdTTVRqOrareG+upVt2jVfKjtCkKqZpwRvkL/uzmPDKfVfj54b+MPxQ+AuseEdA0PwPpfiHxNpl7pWqS6l4gvJrTT4pv3W6ApYq9wzQtJywhEb7eJQCDU/Yi+Dvjj9nv4E6N8OPGUPh+T+wvO+yanoWpz3P2vzrqed/MiltofJ2eaijDSbvmJ2YAP0BRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKyfFnhbS/HHhXWfDet2v23RdYsptPvrbzHj86CWNo5E3IQy5ViMqQRngg18wfAH9nn4w/sj2974M8Eap4X+JHwvaa4vtOt/Fmp3mlarpkssgxbrJFBcwvAqIXO2KIvLPK+EHDavwz/Zt8ep8XNQ+OfxS1Xwv4q+Kkfh9tE0LQNFtXtNF0hQ8jDy7qVJbgtLuO6bZujFxcIFlQoF4r4Sfs2fG/wAJ/treMfjp4ktfh/c2niuyXSJ9L0vXb5XsLUPaKsiF7HE8qQ2agqfKWR2JzGOAftQfs2fG/wCPXx9+FnjKwtfh/p/hv4b61/amn2Vzrt99s1LF1DKTM4sSkO9LWEBFWTYxkO+QEAfZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUV8q/8ABUf/AJMT+Jv/AHDP/TpaV6r+yd/yaz8G/wDsTNG/9IYa9Voooooooooooooooor5V/4Kj/8AJifxN/7hn/p0tK9V/ZO/5NZ+Df8A2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK5/x/wCAPD3xS8G6t4T8WaTb654e1WE295Y3IO2RcgggggqysAyupDKyqykEAjn/AAL4w+GnhnwrfeG/DHijw+mi/D+yTT9QtoNYin/sOC3jaMJdsZGaLYsDgmUg/unycg16BRRRXP8Ajb4heFfhrpUWp+LvEuj+FdNmmFtHea3fxWcLylWYRh5GUFiqOduc4Unsa6Ciiiiiiiiiiivzq+JV7/w3B+3/AK18EdS8V6ha/CPwLowvdX0LRNR/0fxDdRz2rSxXDRbSuyaeKNlYu0ZtJNhikkZk91/aK/4J+/Cb4v8Awj13w/4d8A+F/B/icwvcaPq+jadDprQ3qo3kiaSGIloGY7ZEKt8pJUB1Rl+YPiF8N/DfiT/gqX8C7LxJ8NvD+jf8JN4Ml1jxH4XltLa7t21KSDVZJjOVTy7mVZUUGYg7jGrdhXQf8Flfh74V0H9m3wTqemeGdH07UrLxBY6Ja3lpYRRTQaelneslojqoKwKwBEQO0EAgV9/+Cfh74V+GulS6Z4R8M6P4V02aY3MlnolhFZwvKVVTIUjVQWKog3YzhQOwryr9tz48zfs4/s0eMfGGn3FvB4hEK6fowmnjjY3s7CNHjWRWErRKXn8vadywMDgZYef/ALJP7LXgLXv2efBPij4h+HdH+KXjbxTpltr+qeJ/F+nJqd9O1xCjxRGW5MrhYYfJhAVgp8rdtUuwryq11ax/Zn/4KEJ8E3vLeb4K/FHw+01v4N1KVU0jRrqdrkGGCGYuhW4mhuF8iPykZr9V2N5SA8//AME7/hP4I1P9qb9qr7Z4N8P3f/CL+M4v7B8/S4H/ALI2X2pbPsmU/cbfKix5e3Hlp/dGD43fCfwRff8ABXT4SaJceDfD9xouueGbvUtV06XS4Gt9QumTV3a4njKbZZS0aMXcFiUU5yBX6P6TpNjoOlWemaZZW+nabZQpbWtnaRLFDBEihUjRFACqqgAKBgAACrdFFFFFFFfmr8OfC1v+yt/wVk8VPr1rqFh4b+KlleDw7rV/JD9nub65ltryeLzMqBi4jlgSPBkzLbAqRIrn9CvH/j/w98LfBureLPFmrW+h+HtKhM95fXJO2NcgAAAEszMQqooLMzKqgkgH4A+O+i+Hvil/wVg+A1prmh2+ueHtV8DPO+l+INMO2RfK1eWMTW1wgKsrBW2SIGVl5AI4yv8Agrt8Efh18Nf2bfDep+EfAHhfwrqU3i22tpLzRNGtrOZ4jZ3jGMvGikqWRDtzjKg9hX2p8b/DPxc8earpmi/Dfxvb/C7TbaFrzUPEs2i2+rTXcrNsitIIJZAFVVEskruoOTbCMtmYJ8lfF7Q/iX+1x/wT78faP4v8H/298U/AfiabTrK70YSxxa3Pp1wsFzqFrEVjEm6F72Ly1Vg0kb7EV9safSv7BPxM0P4ofsj/AAzu9En8z+yNGtdBvoHdDLb3VpCkEiuqM23dsEihsMY5Y2IG7FfNXxA8LaX+0h/wVk8E3mh2v/CWeG/hro0I8TX1nIy2+lalBLfTWsTygqGlW4e2PloWyUlVlIimC5X7Dfwn8EfFD9qb9sP/AITLwb4f8W/YfGZ+yf27pcF79n332p7/AC/NRtu7YmcYztXPQVb8X/D3wr8Nf+Cv3wO0zwj4Z0fwrps3hK6uZLPRLCKzheUwaupkKRqoLFUQbsZwoHYV+j9FFFFFFFFcV8Xvgv4K+PXg2Twr498P2/iLQnmjuRbzO8bRyoflkjkjZXjbBZdyMCVZlOVZgef8J/sv/Dnwb/YyWmkahqNponknSbDX9d1DV7PTXh2+RLa293PLFBLGFCpJGquillVgGIPP+Nv2I/g/8RvH0XjfxHoWsap4sgmFxa6tJ4q1ZZrNllaZBblboCBUkdmRIgqoT8oFavxU/ZM+Gfxv0rSNM8daXrHiTTdKhhhtbO78Tap5IMSuqTOi3IEs+2RwZ5A0rBiGc14B+0d+0V4H/Yf0rw38GPBuu3Hg7V9chWaPXPEEmo67aeFtMCmEXEccjTPK2Ldo4LRMRB13SbEz5nr/AOxf8SPhp4y+FY8O/CC31C58A+C/I0K2166tI7WLUpxAkszLGNkplBlVpXkhiDySsy7/AJiOr1L9l/4c33irVfElnpGoeGda1badTufCeu6hoX9oOJJJBLcrYzwrNLumlPmSBnO8/NjFdB4J+C/gr4a+AZfBfhHw/b+FfD00Jhkh0R3s5nJiWIzG4jZZTOURB5+/zcqDvyAa8/8ABP7Efwf+HPj6Xxv4c0LWNL8WTzG4utWj8Vas014zSrM4uC10ROryIrOkoZXI+YGjxt+xH8H/AIjePovG/iPQtY1TxZBMLi11aTxVqyzWbLK0yC3K3QECpI7MiRBVQn5QK9q0nTYdF0qz0+3e4kt7SFLeN7u5kuZmVVCgvLIzPI2By7sWY5JJJJq3RRRRRRRRRRRRRRRRRRRX/9k= width=95 height=243 />
   
  Refer to instructions. _____ a ketose and _____ an aldose with two chirality centers"

Answer to Question 23



Answer to Question 24

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+




anshika

  • Member
  • Posts: 510
Reply 2 on: Aug 23, 2018
Great answer, keep it coming :)


dawsa925

  • Member
  • Posts: 326
Reply 3 on: Yesterday
Wow, this really help

 

Did you know?

Only 12 hours after an egg cell is fertilized by a sperm cell, the egg cell starts to divide. As it continues to divide, it moves along the fallopian tube toward the uterus at about 1 inch per day.

Did you know?

The calories found in one piece of cherry cheesecake could light a 60-watt light bulb for 1.5 hours.

Did you know?

Autoimmune diseases occur when the immune system destroys its own healthy tissues. When this occurs, white blood cells cannot distinguish between pathogens and normal cells.

Did you know?

In the ancient and medieval periods, dysentery killed about ? of all babies before they reach 12 months of age. The disease was transferred through contaminated drinking water, because there was no way to adequately dispose of sewage, which contaminated the water.

Did you know?

Though “Krazy Glue” or “Super Glue” has the ability to seal small wounds, it is not recommended for this purpose since it contains many substances that should not enter the body through the skin, and may be harmful.

For a complete list of videos, visit our video library