Author Question: What does the limit of the derivative of a function tell you? (Read 1021 times)

aero

  • Hero Member
  • *****
  • Posts: 512
Starting with the function F(x) = (x^2 - 8)/(x+3), I took the derivative of it and got (x^2+6x+8)/(x+3)^2. Then I found the limit of that as x approached infinity, and it was 1. What does that answer tell me about F(x), the original function?

And please don't post any silly answers. Thanks.



j_sun

  • Sr. Member
  • ****
  • Posts: 384
You did the derivative and the limit correctly.
In the limit, the slope of F is 1 means that eventually, the function F  is increasing 1 unit for every unit of x.
So the graph of F will eventual look like   F approximately =  1*x +b



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Signs and symptoms of a drug overdose include losing consciousness, fever or sweating, breathing problems, abnormal pulse, and changes in skin color.

Did you know?

Liver spots have nothing whatsoever to do with the liver. They are a type of freckles commonly seen in older adults who have been out in the sun without sufficient sunscreen.

Did you know?

People with high total cholesterol have about two times the risk for heart disease as people with ideal levels.

Did you know?

There are 60,000 miles of blood vessels in every adult human.

Did you know?

Alzheimer's disease affects only about 10% of people older than 65 years of age. Most forms of decreased mental function and dementia are caused by disuse (letting the mind get lazy).

For a complete list of videos, visit our video library