This topic contains a solution. Click here to go to the answer

Author Question: Which of the following has a D-configuration? a. only 1 and 2 b. only 1 and 3 ... (Read 31 times)

anshika

  • Hero Member
  • *****
  • Posts: 510

Which of the following has a D-configuration?
 
   


   
  a.
  only 1 and 2
   
  b.
  only 1 and 3
   
  c.
  only 2 and 3
   
  d.
  only 1, 2 and 3

Question 2

What is the relationship between D-erythrose and D-threose?
 
   


   
  a.
  they are constitutional isomers
   
  b.
  they are enantiomers
   
  c.
  they are diastereomers
   
  d.
  they are tautomers

Question 3

Which reagent would be best suited for the transformation shown?
 
   


   
  a.
  alkaline Cu2+ in H2O
   
  b.
  Ag+ in H2O/NH3
   
  c.
  H2, with Ni catalyst
   
  d.
  NaNO3 at 0C
   
  e.
  NaBH4 in H2O

Question 4

The monosaccharide shown below is
 
   


   
  a.
  an aldohexose
   
  b.
  an aldopentose
   
  c.
  an aldotetrose
   
  d.
  a ketohexose
   
  e.
  a ketopentose

Question 5

What is the correct structure for -D-glucopyranose?
   
  a.
 
   
  b.
 
   
  c.
 
   
  d.
 

Question 6

Instructions: Refer to D-iodose below to answer the following question(s).
 
   




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

nathang24

  • Sr. Member
  • ****
  • Posts: 314
Answer to Question 1

b

Answer to Question 2

c

Answer to Question 3

b

Answer to Question 4

b

Answer to Question 5

a

Answer to Question 6

d

Answer to Question 7

c

Answer to Question 8

a)
b


b)
b

Answer to Question 9

a)
a


b)
The production of a silver mirror which is an indication of a positive test for a reducing sugar (aldose).

Answer to Question 10

a)
a


b)
-anomer

Answer to Question 11

a)



b)
The two anomeric forms differ in the position of the OH group on the C1 carbon relative to the OH at the lowest chirality center in the Fisher projection. If these two OH groups are cis, the anomer is , if they are trans the anomer is .

Answer to Question 12



Answer to Question 13

b

Answer to Question 14

c

Answer to Question 15

Z

Answer to Question 16



Answer to Question 17



Answer to Question 18



Answer to Question 19



Answer to Question 20



Answer to Question 21



Answer to Question 22

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+LPDOs6fpVjb+DtXe4ac28kKpNELXfbbndQpnEYYHcpKgmuV/4JoQ6h4a/ZP8J+Ddd0DxB4c8SaD9r+32Wu6Heaft8+/upYvLeeJEmyhUny2bbuUNtJAr6qooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFef/AB++Dul/tAfBvxZ8PtXk+z2muWTQJdbXb7NOpEkE+1XQv5cyRybNwDbNp4Jr5V/Zz/aIT9jX4Nw/DX9om18QeEbvwfenR9P8XT6ffano+uwSGWa2FpdRQsB5cP7sQvgqkaAYKyRxGo+D/En7Vv7VmkfFTxT4X8QeFfgx8H/Om0TTtb0e5h1TXtSXEzXlvaJGt0Ig0dsyqwff9njRYy0s6Rc/8HrjU4f+CoXxM+I0/g7xxZ+CfE/h+10fS9au/BurQQy3RTS02vvtgYVDW82ZJQiAISWAIJP27LjU/iF+0l+zfqfhvwd441nTfAXi2W58Q3lp4N1Z4bWJbywYyI/2bFwpW3mIaEuGCgjO5c/f+k6nDrWlWeoW6XEdvdwpPGl3bSW0yqyhgHikVXjbB5R1DKcggEEVboooooor5V/4Kj/8mJ/E3/uGf+nS0r1X9k7/AJNZ+Df/AGJmjf8ApDDXqtFFFFFFFFFFFFFFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooooooooooooooor5V/4Kj/APJifxN/7hn/AKdLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/wDBUf8A5MT+Jv8A3DP/AE6Wleq/snf8ms/Bv/sTNG/9IYa9Vooooooooor4/wD2/v2k/in+yT4JtPHHhu68H6xouoa1b6RBo2qaFdG4g3200rSPdJfKsnzQNhRCmA4GSVy3qvxq8QfFP4Z/A/W/Fth4l8H3WteGNG1LV9SW48L3X2fUfIiaaKOFBqIa2+VCjMzzbidwCgbTlfsRfGLxx+0J8CdG+I/jKbw/H/bvnfZNM0LTJ7b7J5N1PA/mSy3M3nb/ACkYYWPb8wO/II+gKKKK+Vf+Co//ACYn8Tf+4Z/6dLSvVf2Tv+TWfg3/ANiZo3/pDDXqtFFFZPizxTpfgfwrrPiTW7r7Fouj2U2oX1z5byeTBFG0kj7UBZsKpOFBJxwCa+S/hn8RPjx+2l4N1Dxp4I8WaP8AA34fXOpsvhm6bQYtb1rUrWEyQzPdCSfyIVMqkhVQuChG7aoeboPBP7TnjjSv2gtd+AfxOg8P6V4+1Kyl1TwR4l0Sxnl0vVLXy5SpuLVrhpYpUMEzMhmVW8uRA64jkm5/4b/tHfGHxR+294u+BOp6l4HOm+FNMt9ZutYtPDd5HNfRMLJ3gRG1FhC228IEhMgBQEoc4B+1J+0d8YfgJ8aPhH4R0zUvA+p6b8SfEEmlWst34bvBNpUX2m1iRnK6iBcMFuxkgRAmM4C7sL9f6THfQ6VZx6ncW95qSwot1cWlu0EMsoUb3SNncopbJCl3IBALNjJ+C/8AgtX/AMms+Fv+xztf/SG+r1/9prQfjDD+zb8V5NT8deB7zTV8Jas11b2ngq8gmliFnLvRJG1ZwjFcgMUcAkEq2MHgP2ILPx7qX/BMPwlafDC/0fS/HdxDqUWmX2vK7Wlszavch5GCo5LLGXZAUZd4TcpXIrn/APhTf/BQz/ou3w//APAGH/5VUf8ACm/+Chn/AEXb4f8A/gDD/wDKqj/hTf8AwUM/6Lt8P/8AwBh/+VVH/Cm/+Chn/Rdvh/8A+AMP/wAqq8U/bM+Gn7ZPh/8AZs8YX/xW+LHg/wATeAYfsf8AaWl6XaRpcT5vIFi2EafERtmMTH94vCnr0PbfBH4T/t16l8F/AN34R+M/gfS/Cdx4f0+XR7G7s4mmtrJraMwRuTpjkssZRSd7cg/Metdr/wAKb/4KGf8ARdvh/wD+AMP/AMqqP+FN/wDBQz/ou3w//wDAGH/5VUf8Kb/4KGf9F2+H/wD4Aw//ACqroPh78J/269N8feGrvxd8Z/A+qeE7fU7aXWLG0s4lmubJZVM8aEaYhDNGHUHevJHzDrXa/wDBUf8A5MT+Jv8A3DP/AE6Wlelfsd6tY61+yh8HrjT7y3v7dPCWl2zS20qyKssVrHFLGSpIDJIjoy9VZWBwQRXyr/wUZ1axm/a8/Y30yO8t31K28Wpcz2ayqZoopNQ01Y5GTOVV2hlCsRgmNwPunGV4QsvFV9/wV++OMfhHWdH0PUh4StWkuNb0iXUoWi8jSMoI47q3IbcUO7eQACNpyCKn7cmm+ONP/am/Y8/4TLxD4f17f4zH2T+wtBn0zysX2mb/ADPNvbnzM5TGNm3a2d2Rt/SqvjX/AIKBfsz/ABh/a48PaZ4L8MDwPovhPTdTTVRqOrareG+upVt2jVfKjtCkKqZpwRvkL/uzmPDKfVfj54b+MPxQ+AuseEdA0PwPpfiHxNpl7pWqS6l4gvJrTT4pv3W6ApYq9wzQtJywhEb7eJQCDU/Yi+Dvjj9nv4E6N8OPGUPh+T+wvO+yanoWpz3P2vzrqed/MiltofJ2eaijDSbvmJ2YAP0BRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKyfFnhbS/HHhXWfDet2v23RdYsptPvrbzHj86CWNo5E3IQy5ViMqQRngg18wfAH9nn4w/sj2974M8Eap4X+JHwvaa4vtOt/Fmp3mlarpkssgxbrJFBcwvAqIXO2KIvLPK+EHDavwz/Zt8ep8XNQ+OfxS1Xwv4q+Kkfh9tE0LQNFtXtNF0hQ8jDy7qVJbgtLuO6bZujFxcIFlQoF4r4Sfs2fG/wAJ/treMfjp4ktfh/c2niuyXSJ9L0vXb5XsLUPaKsiF7HE8qQ2agqfKWR2JzGOAftQfs2fG/wCPXx9+FnjKwtfh/p/hv4b61/amn2Vzrt99s1LF1DKTM4sSkO9LWEBFWTYxkO+QEAfZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUV8q/8ABUf/AJMT+Jv/AHDP/TpaV6r+yd/yaz8G/wDsTNG/9IYa9Voooooooooooooooor5V/4Kj/8AJifxN/7hn/p0tK9V/ZO/5NZ+Df8A2Jmjf+kMNeq0UUUUUUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK5/x/wCAPD3xS8G6t4T8WaTb654e1WE295Y3IO2RcgggggqysAyupDKyqykEAjn/AAL4w+GnhnwrfeG/DHijw+mi/D+yTT9QtoNYin/sOC3jaMJdsZGaLYsDgmUg/unycg16BRRRXP8Ajb4heFfhrpUWp+LvEuj+FdNmmFtHea3fxWcLylWYRh5GUFiqOduc4Unsa6Ciiiiiiiiiiivzq+JV7/w3B+3/AK18EdS8V6ha/CPwLowvdX0LRNR/0fxDdRz2rSxXDRbSuyaeKNlYu0ZtJNhikkZk91/aK/4J+/Cb4v8Awj13w/4d8A+F/B/icwvcaPq+jadDprQ3qo3kiaSGIloGY7ZEKt8pJUB1Rl+YPiF8N/DfiT/gqX8C7LxJ8NvD+jf8JN4Ml1jxH4XltLa7t21KSDVZJjOVTy7mVZUUGYg7jGrdhXQf8Flfh74V0H9m3wTqemeGdH07UrLxBY6Ja3lpYRRTQaelneslojqoKwKwBEQO0EAgV9/+Cfh74V+GulS6Z4R8M6P4V02aY3MlnolhFZwvKVVTIUjVQWKog3YzhQOwryr9tz48zfs4/s0eMfGGn3FvB4hEK6fowmnjjY3s7CNHjWRWErRKXn8vadywMDgZYef/ALJP7LXgLXv2efBPij4h+HdH+KXjbxTpltr+qeJ/F+nJqd9O1xCjxRGW5MrhYYfJhAVgp8rdtUuwryq11ax/Zn/4KEJ8E3vLeb4K/FHw+01v4N1KVU0jRrqdrkGGCGYuhW4mhuF8iPykZr9V2N5SA8//AME7/hP4I1P9qb9qr7Z4N8P3f/CL+M4v7B8/S4H/ALI2X2pbPsmU/cbfKix5e3Hlp/dGD43fCfwRff8ABXT4SaJceDfD9xouueGbvUtV06XS4Gt9QumTV3a4njKbZZS0aMXcFiUU5yBX6P6TpNjoOlWemaZZW+nabZQpbWtnaRLFDBEihUjRFACqqgAKBgAACrdFFFFFFFfmr8OfC1v+yt/wVk8VPr1rqFh4b+KlleDw7rV/JD9nub65ltryeLzMqBi4jlgSPBkzLbAqRIrn9CvH/j/w98LfBureLPFmrW+h+HtKhM95fXJO2NcgAAAEszMQqooLMzKqgkgH4A+O+i+Hvil/wVg+A1prmh2+ueHtV8DPO+l+INMO2RfK1eWMTW1wgKsrBW2SIGVl5AI4yv8Agrt8Efh18Nf2bfDep+EfAHhfwrqU3i22tpLzRNGtrOZ4jZ3jGMvGikqWRDtzjKg9hX2p8b/DPxc8earpmi/Dfxvb/C7TbaFrzUPEs2i2+rTXcrNsitIIJZAFVVEskruoOTbCMtmYJ8lfF7Q/iX+1x/wT78faP4v8H/298U/AfiabTrK70YSxxa3Pp1wsFzqFrEVjEm6F72Ly1Vg0kb7EV9safSv7BPxM0P4ofsj/AAzu9En8z+yNGtdBvoHdDLb3VpCkEiuqM23dsEihsMY5Y2IG7FfNXxA8LaX+0h/wVk8E3mh2v/CWeG/hro0I8TX1nIy2+lalBLfTWsTygqGlW4e2PloWyUlVlIimC5X7Dfwn8EfFD9qb9sP/AITLwb4f8W/YfGZ+yf27pcF79n332p7/AC/NRtu7YmcYztXPQVb8X/D3wr8Nf+Cv3wO0zwj4Z0fwrps3hK6uZLPRLCKzheUwaupkKRqoLFUQbsZwoHYV+j9FFFFFFFFcV8Xvgv4K+PXg2Twr498P2/iLQnmjuRbzO8bRyoflkjkjZXjbBZdyMCVZlOVZgef8J/sv/Dnwb/YyWmkahqNponknSbDX9d1DV7PTXh2+RLa293PLFBLGFCpJGquillVgGIPP+Nv2I/g/8RvH0XjfxHoWsap4sgmFxa6tJ4q1ZZrNllaZBblboCBUkdmRIgqoT8oFavxU/ZM+Gfxv0rSNM8daXrHiTTdKhhhtbO78Tap5IMSuqTOi3IEs+2RwZ5A0rBiGc14B+0d+0V4H/Yf0rw38GPBuu3Hg7V9chWaPXPEEmo67aeFtMCmEXEccjTPK2Ldo4LRMRB13SbEz5nr/AOxf8SPhp4y+FY8O/CC31C58A+C/I0K2166tI7WLUpxAkszLGNkplBlVpXkhiDySsy7/AJiOr1L9l/4c33irVfElnpGoeGda1badTufCeu6hoX9oOJJJBLcrYzwrNLumlPmSBnO8/NjFdB4J+C/gr4a+AZfBfhHw/b+FfD00Jhkh0R3s5nJiWIzG4jZZTOURB5+/zcqDvyAa8/8ABP7Efwf+HPj6Xxv4c0LWNL8WTzG4utWj8Vas014zSrM4uC10ROryIrOkoZXI+YGjxt+xH8H/AIjePovG/iPQtY1TxZBMLi11aTxVqyzWbLK0yC3K3QECpI7MiRBVQn5QK9q0nTYdF0qz0+3e4kt7SFLeN7u5kuZmVVCgvLIzPI2By7sWY5JJJJq3RRRRRRRRRRRRRRRRRRRX/9k= width=95 height=243 />
   
  Refer to instructions. _____ a ketose and _____ an aldose with two chirality centers"

Answer to Question 23



Answer to Question 24

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/wAALCADzAJQBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AP1Toooooor5V/aC/a28X6L8cNJ+B3wX8Iaf4y+JN7ZJqGoalqt2f7L8PwGVfnvEiPmf6rLEFoyPOtygmaVYzz/x9h/ao+Bvwj+InjfQvij4X+ILwwzX7aZe+Eo9NbQ7JUleWWwkW5YStEpVhHdCXcsPVmyktTxl+1J8U7f9snwJ8HfDGvfD/UPDfjjRpPEWl+JP7AurnyLUpeywp+71JUucpaL++Uxq3mbggAwdX9vT9pP4p/sjfCvwz4y0S68H679qvbXRL6y1DQrpfMumguJZLmJ0vh5cR8gBYWV2XJJlbpX1B4JsvFVjpUsfi7WdH1zUjMWjuNE0iXTYVi2rhDHJdXBLbg53bwCCBtGCTU+KvxM0P4N/DjxH428ST/Z9F0OykvZ9rory7R8sUe9lUyyNtjRSw3O6rnJr518AeIv2gP2svhHpPjjQ/F2j/ADTdZmF5pemp4aOuambJUKBp57qSKIrM+6ZPLtx+78giQ7mB1fh5+1B4qvPj14s+AXjrT9H8PfEW00yTUvDvii3hlGka9E25o5I7OaVZd0aMu+KOeUM1vdgSoI8nlf2W/2jvjD8e/jR8XPCOp6l4H0zTfht4gj0q6ltPDd4ZtVi+03UTshbUSLditocEiUAyDIbbhj4kftHfGHwv+294R+BOmal4HGm+K9MuNZtdYu/Dd5JNYxKL10gdF1FRM22zAMgMYJckIMYP1/pMd9DpVnHqdxb3mpLCi3VxaW7QQyyhRvdI2dyilskKXcgEAs2Mm3RRRRRRRX5q/sof8JP/wAPcP2gv+Eu/wCQr/Y175P+q/48PtenfYP9X8v/AB6fZ+vzf3/n3V+lVfnB8d9AvtL/AOCsHwG0bwRJo/hi4tPAz22nC50trmxtIki1cCMW0U0B2iNSqqsihflPIG05X/BXbSfiLY/s2+G5PF3irwvrmmnxbbLHb6J4ZudNmWX7HeYcySahcArtDjbsBJIO4YIP2/8AHT9obS/gX/YlvL4U8YeOda1jz5LbRPBWjPqV55EPlia4dQyqsSNPAhJbJaZMAjcV+Sv2+PjRY/tK/wDBOa/8dfC/xBbt4YbU7A+IbO7RRdpEJkU2Tptfy50uZLOQ4ZQUQsrujr5n1r+yd/yaz8G/+xM0b/0hhr41/acs/EV//wAFePgBF4Yv7fTtSXw/byzTXKgq1kk+pvexjKN80lss8anHDOvzJ94VP2G9N8cah+1N+2H/AMIb4h8P6Ds8Zn7X/bugz6n5ub7U9nl+Ve23l4w+c7925cbcHdb8X2Xiqx/4K/fA6PxdrOj65qR8JXTR3GiaRLpsKxeRq+EMcl1cEtuDndvAIIG0YJP6P0UUUUUUUV8v/tHfsi33i74oeG/jV8JbvR/Cvxq8PzKPtWrws2m61alDDJDeBFZwwhd0WZBv2/JkYieHq9S8OfHX4meDU8MeINQ8L/DR7mGGPVfFHgnVLq/vpVyouI7KKe1hFk0i79k7SXDQ8YR2IkTxX4i/ss/GnUv2wPAPxk8JweB4tN8E6YNAs9N8QeJtSu7nUbIG6QyzTmzLpO8N2eWabbIu5ml5B3/29P2bPin+1z8K/DPg3RLXwfoX2W9tdbvr3UNdum8u6WC4iktokSxPmRDzwVmZkZsEGJeteq33xRuPgr8OJfGvxg0bw/p/jO4+y6MkPgeSbUbjxBOAxtrS0SWCKZpXmlufLtsyCMOzGXBkZcr4L/s1aX/wz7rXhj4l+HtP1DVfiDe3fiXxppahvs/9pXsgmlij/fSbPs+Iokkjk626yqQ53Vz/AMCfgj8Wf2VPDM/gLwjceF/iR8PraaS50I+JNRm0TUtLWWeWSS2kaCzuUuly6OJcRNueUbduxVt/Cb9lvXPC/jvX/jL8QtY0/wCJPxtvrIw6Z5gkstH0CPyjiwsciV44t7SIbkoZCjE+Xukm83z/APZf/Zs+N/wF+PvxT8ZX9r8P9Q8N/EjWv7U1Cyttdvvtmm5uppQYXNiEm2JdTAoyx72EZ3xgEE+Lf7Nnxv8AFn7a3g746eG7X4f21p4Usm0iDS9U12+Z7+1L3atI5SxxBK8N4wCjzVjdQcyDg/ZWkyX02lWcmp29vZ6k0KNdW9pO08MUpUb0SRkQuobIDFEJABKrnAt0UUUUUUV81f8ABR7xZrngf9jH4h634b1nUPD+tWv9neRqOl3UltcQ7tRtUbZIhDLlWZTg8hiOhr0r9mXVr7Xv2bfhRqep3lxqOpXvhLSbm6vLuVpZp5Xs4meR3YkszMSSxOSSSa9Lor5/+Pn7G+h/tAfEfw942v8Ax/8AEDwjrXh+yey03/hEtZSyS28wv5sqZhdklkVxG7Kw3JGikYWur+Af7Ouh/s/2fiH7BrniDxdrXiC9S91LxH4tu0vdUufLhSGKJ7gRozxRqh2K2dvmPg4bFeq0UUUUUUUUUUUV8q/8FR/+TE/ib/3DP/TpaV6r+yd/yaz8G/8AsTNG/wDSGGvVaKKKKKKKKKKKKKKKK+Vf+Co//JifxN/7hn/p0tK9V/ZO/wCTWfg3/wBiZo3/AKQw16rRRRRRRRRRRRRRRRRXyr/wVH/5MT+Jv/cM/wDTpaV6r+yd/wAms/Bv/sTNG/8ASGGvVaKKKK5/xt8QvCvw10qLU/F3iXR/CumzTC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NdBRRRRRRRRRRXyr/wAFR/8AkxP4m/8AcM/9OlpXzr8Efix+3XpvwX8A2nhH4MeB9U8JweH9Pi0e+u7yJZrmyW2jEEjg6mhDNGEYjYvJPyjpXa/8Lk/4KGf9EJ+H/wD4HQ//AC1o/wCFyf8ABQz/AKIT8P8A/wADof8A5a0f8Lk/4KGf9EJ+H/8A4HQ//LWug+HvxY/br1Lx94atPF3wY8D6X4Tn1O2i1i+tLyJprayaVRPIgGpuSyxl2A2NyB8p6V9FftT/ABr/AOGdv2ffG3xCS1+23ej2Q+xwNH5iNdSyJBb+Yu9CYhNLGXwwbYG25OAfCv2O/wBlLwr4v+Een/E/4vaJo/xR+JXxDhh8RanrHiO0i1FYopU32sFuksQWBUgeMMiLgNlQxjjiC8Vr3/GBX7a3gHSPCP8Aofwd+M169rdeErf94mnazvjh+02kZ2LbxM1xZ7grMNnnDZiO3VPv+iiiiiiiiivlX/gqP/yYn8Tf+4Z/6dLSvP8A9nv47ftE6P8AAL4aWGifsu/8JBotr4Z0yCx1b/hYOnW322BbWNY5/KdN0e9QG2Nyu7B5Fegf8NEftO/9Gjf+ZK0v/wCN0f8ADRH7Tv8A0aN/5krS/wD43R/w0R+07/0aN/5krS//AI3Wr4T+O37ROseKtGsNb/Zd/wCEf0W6vYYL7Vv+Fg6dc/YoGkVZJ/KRN0mxSW2Ly23A5Nav7fHwz1z4vfshfEnwx4bg+161NZQ3sFqqSO9x9muYrpoo1RWZpXWBkRQPmdlGQDkZX/BOr4xaX8ZP2R/Ak1hH9nu/DdlF4Y1C23O3lT2cMcYO4ooPmQ+TN8uQvnbNxKmvFf2rrHVP2gP+ChfwF8AeFItPuJPhrs8aa9fPqC/6NA15as8DxAFll221uVXkt9sjJCIC9ff9FFFFFFFFFfKv/BUf/kxP4m/9wz/06Wleq/snf8ms/Bv/ALEzRv8A0hhr1WiiiivH9W/ZJ+FeqePrzxvb+HLjw74svoXt7zVvCusX2hzXavKZpDMbKaESs8h3M7gsxVck7Vx0Hwd+APw8/Z/0GTSPh94T0/wzaTY8+S3UvcXOGdl86dy0s20yybd7NtDYXA4r0CiiiiiiiiivlX/gqP8A8mJ/E3/uGf8Ap0tK9V/ZO/5NZ+Df/YmaN/6Qw16rRRRRRRRRRRRRRRRRXyr/AMFR/wDkxP4m/wDcM/8ATpaV6r+yd/yaz8G/+xM0b/0hhr1WiiiiiiiiiiiiiiiivlX/AIKj/wDJifxN/wC4Z/6dLSvVf2Tv+TWfg3/2Jmjf+kMNeq0UUUUUUUUV86/tMftsaD+yjcW0njXwB44n0K8m+zWfiHSbWxuLG4l8tZDHk3avG2CwCyohbypCm5VLV1XxQ/aGufhH8Lx461z4W+OJtNt4ZrnVLPTV026u9JijcL5k6JekMrKTJuhaUIis0nl7TVv9nP8AaE0/9pbwJD4y0Lwv4g0Lw3dZ+wXuuizX7dtllil8tILiV12PEwPmKmcqV3DJHqtFFFfKv/BUf/kxP4m/9wz/ANOlpXqv7J3/ACaz8G/+xM0b/wBIYa9Voooor5/8P/tmeG/iL4q1LR/hl4P8YfFW003zI7vxB4Zs7aLR4545Aj263l7cW8UsoDRuBEXDJIrKWG4jV+E37WfhD4yf2/pejab4g03x9oVkb6/+H/iCwGma7Ehz5Q8qd1iPmDyiGEuxRPD5jR7xXK/D39uXR/iR8cNU+Etj8MviBp/jPR/3mq2uqW+m26WEAlija4djfHzIh58TgwiQujBkDgjJ8Wf25dH+C/xU0DwB4i+GXxAXWvEd6LHQbi2t9Nez1V2nECGGY3wVcs0ZKybHRZIy6oGFfRWk3k2paVZ3dxYXGl3E8KSyWN20bTWzMoJjcxu6FlJ2ko7LkHDEYNfBf/Bav/k1nwt/2Odr/wCkN9Wr+0J+23/wlnwC+Jeif8KD+OGj/wBpeGdTsv7R1bwb5Fna+ZayJ5s8nnHZEu7czYOFBOOK1f2CvH3/AAq//gmz4G8Tf8I54g8W/Yft3/En8LWP23UbjfrFxH+6h3Lu2797cjCqx7V1f/DfX/VuX7QH/hDf/b6P+G+v+rcv2gP/AAhv/t9H/DfX/VuX7QH/AIQ3/wBvo/4b6/6ty/aA/wDCG/8At9fP/wC3r+15/wALQ/ZP8c+Gf+FK/GDwl9u+w/8AE48U+FPsWnW+y/t5P3s3mtt3bNi8HLMo716B+z3+23/wifwC+Gmif8KD+OGsf2b4Z0yy/tHSfBvn2d15drGnmwSecN8TbdytgZUg45r0D/hvr/q3L9oD/wAIb/7fR/w31/1bl+0B/wCEN/8Ab6P+G+v+rcv2gP8Awhv/ALfWr4T/AG2/+Es8VaNon/Cg/jho/wDaV7DZf2jq3g3yLO18yRU82eTzjsiXduZsHCgnHFH/AAUi8U6p4P8A2Jfilf6RdfZLuayt9PeTy1fMFzdwW06YYEfNDNIueo3ZBBAI6D9hbwTY+AP2P/hJpmny3E1vP4ft9VZrllZhLeD7ZKoKqBtElw4UYyFCgknJPzV+3VZzeAf29v2TvHuiX9xa67rWpjwzdBljkhFkLuGNwqshIZ49TuUZsnA2FdrLuPFTfF7/AIUv/wAFaPjZrf8AwhXjDx39o8M2ll/Z3grSv7RvI91tpT+a8e9cRDy9pbPDOgxzWV+1V8ff+F5ftTfslf8AFuPiB8P/AOy/GcX/ACPWh/2b9r8y+07/AFH7xt+zy/m6Y3p1zX6qV8Af8FabXWPix8H9K8CeDPCPjDxR4k03xNa6hcxaX4V1Ke3EH2K5BdLpYDBJgzxghJCQSQRlWx7/APtLfEiw8S/sy+NLPStE8Yahf+




anshika

  • Member
  • Posts: 510
Reply 2 on: Aug 23, 2018
Wow, this really help


flexer1n1

  • Member
  • Posts: 373
Reply 3 on: Yesterday
Gracias!

 

Did you know?

In the United States, congenital cytomegalovirus causes one child to become disabled almost every hour. CMV is the leading preventable viral cause of development disability in newborns. These disabilities include hearing or vision loss, and cerebral palsy.

Did you know?

Each year in the United States, there are approximately six million pregnancies. This means that at any one time, about 4% of women in the United States are pregnant.

Did you know?

Bisphosphonates were first developed in the nineteenth century. They were first investigated for use in disorders of bone metabolism in the 1960s. They are now used clinically for the treatment of osteoporosis, Paget's disease, bone metastasis, multiple myeloma, and other conditions that feature bone fragility.

Did you know?

There are 20 feet of blood vessels in each square inch of human skin.

Did you know?

The cure for trichomoniasis is easy as long as the patient does not drink alcoholic beverages for 24 hours. Just a single dose of medication is needed to rid the body of the disease. However, without proper precautions, an individual may contract the disease repeatedly. In fact, most people develop trichomoniasis again within three months of their last treatment.

For a complete list of videos, visit our video library