This topic contains a solution. Click here to go to the answer

Author Question: Draw alternative chair conformations for each substituted cyclohexane and state which chair is more ... (Read 37 times)

casperchen82

  • Hero Member
  • *****
  • Posts: 540
Draw alternative chair conformations for each substituted cyclohexane and state which chair is more stable.
 
 
 
 

Question 2

6k7I8AhBZGPmKYBUUAtkTkacnIkA8O3AiQoZ7Eg00akxnmQPDAQMIqMVkhBIoIYoGVIbCxw376/vvvMwgaaLZQGsyNxAyyaAPsido+OBn2M4S/FZyL4dwoSSKQExDYu3cv93uD3125cuVSOP7r036se0ZgDwTpUNP8+fPpq6++Uh8yi304hsO5GT67cIKGryPWCmPNNhy6ESvA3AmLPBBAxt3dnfsHa+NXCkNtqMhjEoEsRODVq1c86gocmZ88ecLvhJUiK1asyLCAzUJ2c0zV1jmmpbKhEgEzQODhw4d8RQdC3WG5HAirJaAVmnNEdDOALstZkMIwyyGWN5AIvEEAw0uE1cdadCwjwxJHLN1cu3YtYS2xJNMiIIWhafGXd88hCCxbtowHDHB1dSUE+ICtDcFysVYfW0mmR0AKQ9P3geQgGyOAgAKIztyjRw9q1aqVEqkdTcawGMckmQcCBo10bR5NklxIBMwDAczCIqIKoq6MHz+eR2fPcRnnzKMrdOJCCkOdYJKFJAL6IRAcHMxTrmK2eOPGjdSuXTv9KpCljY6AHCYbHXJ5w+yOwKZNmxRfNiQwk4LQMnpcCkPL6CfJpQUggAxuEyZM4C4zCPyLiZJKlSpZAOeSRSAgh8nyOZAIGAABRFnGJAlmh5FZburUqXqnqjQAG7KKTCAghWEmwJOXSgSAANJ2YigM/8ElS5ZwoSiRsTwEpDC0vD6THJsRAkji1LlzZ7K3t+e5STKTH8WMmpUjWZE2wxzZ7bLRmUUAwZNnzZrFE5d5eXnxxGBSEGYWVdNeL4WhafGXd7dABOLj48nf358GDRrEI7cggxzS2UqybASkMLTs/pPcmwCB48eP89SZM2fOpEWLFmUqNawJ2Je3TAUBvUN4IScxImwsXryY4uLieBJ1JGX29vbmt8Dxixcv8vzJyHUKevDgAQUGBvLlR9jqk7c1Fb7lYYmAyRCACw3yZtvZ2ZmMB3ljwyOglzB89uwZ1ahRg8+eqVlB5nokkkdIIiRlx5dz+PDhNGXKFF4MAWCrV6/O9xHLLTNJ1tX3lfsSAYmARMBQCOg1TEZmemSpz5s3L23dupWw5Ehof927d6eoqKhUtT5cI9dlGqrbZD0SAYmAoRHQ2bUGwwI4lGJo8PPPP5Ofnx/nZd26dVSwYEHC0GHHjh2G5k/WJxGQCEgEjIKAzsLw0qVLXLND2CGhDYJDBwcH8vHx4T5WyJMgCPtwOQDBhohQRpIkAhIBiYC5IqCzMHz+/DkXhrD5aboRFC9enLcPIYsEXb58mbsfiP8QojKsuUAjp2+TKOriVtpyLpKSiMjO4wPq2LIMOSiwJFHE2c207VI0P5+rSGPq3KIk5VbOm3YnOeoSbd16liKSHMizeQdqWCQXZ0g5npyXvFu1o9qFdH69VA1KpqhLW2nr2QhKdvSi5h3fJw8dq4m9sppmrntNrb/pRlWc9bKAqe6fg3d1Tet3/PhxljdvXmZnZ8eioqJSXObn58dzkX700UdK/lc3Nzc2aNAg/mvevDnPsYw0g8jPKkkiwBKfsr+GlHqT0zZPc7b8fuJbUOIusYn/sX1zrtpkdjHGiOknE8LYxp/msUuxb9l5dy+K7evlzoicWfvtqnch6Qnb2AHJ091Z78Mx716m65GofayXOzFy+YTtitb1ohh2sFchRpSPdd6p4knXy2U5pvPno0qVKgRn01y5ctGxY8eUzwc88TF7DFuir6+vcrxnz540Y8YM/ps8ebJctK4gI3c4Ajb5qWyNuuRX24UobjdNW3GdXv8LTczZjXTXpwqPIuJUqhIVd9L5Mc0cuMnP6FTAx/T53HMUnZxWVfbkWuitHquUtM5Drq72yt8M79i7krbq067PiepOWEPLlqyjwEbmn7oz7baY5qyOCjiRo6Mj9yk8fPgwD2MOO6GbmxsFBAQQfA/hO4jF6phkkSQR0A0BR6rRvw9dPzWFgo8a21IAAAbsSURBVGb9Ruf6zaC6eR7Tgc2M/Oq60OJ5b2tJfvE3LRs7iQ7Ze5LDncdUdkAA9fe+Rb+PGE8bbjtTo971KXTmQrpedQL9+Wtb8qAoOr1gHM0PLUAFn72g8gP/Sz0qO5MiVuNv0eoxo2lPrkpU9NkVuu/1LY0uMYM6jTtJMTaRFDg0kGwCvianbYG07JYjOT0+Sefi69CgiUOpqbLYJJ7CtvyXuk45RNcdP6QRc0ZR4bcsv9lLSocPiqWQFeMp4K9kKvjyCoVX+Y5+HpjvzbUslv6Z9wVNXH6BbGoPoDkze5O3fQxdWv4uT03sz9Jv30+lrfdc6HFpe3JcPkU7LjaaDMr/CgL6aMchISHMycmJD18w5HV2dub7NjY2bNiwYbyqevXq8WPDhw9Xqr5w4QIfXiOjvRwmK7Dk8J0kdu+P3mziyRA2v4EdI3JhnTY9Ya9uLGYDp19k99c1YXZEzKn9NhaV+Iht+KQAI7ee7MDzOBY01pNRnkbstxvP3uwTsffa/5eNbVOcFawfyIJfJbKwpS2ZI1VgPwXHsMuTKjK7koPZiRdvIY/a0ZG52DdkC28nsoSbi1nfH06wF7Gn2dASxMi9N8MoN+HmTPYfKztWb85NFnv9F1aFiBX2P8RiWBw7P6o0I7JjDRbeZnG35rH37YjZ1gpgf/QsrBomp8dHEnuy7XNWmIqzISejWMhkb0bkw+ZfPcNGlSZGVt5sxJ7LbLu/ByNyZZ/te54GTy/Y8QHv/VvuUSq4vG2/3HsXAeVDqUjHNHbKly/Ph8RNmzblrjQxMTFUuHBhmj17No/fhkvhXA2NsVixYkpNmHEuWrQolSlTRvoaKqjIHY6AbTHqOKw9uVA0bZ62ivasO0812lakFIPNiIM0e0MEUcGy5J7bnty93Iji/qLfNt8hK2srTMFQxc8G0Y9b7lD40e+oYu5IOrFkH8Vy7XAizT0WQQm399CBO/EK6LaO+Sn3q8PUu3JN6rHGg0aOrEOOytk3O7ZFmtF3P4yiXtVj6fS+8xRBRFFhEcpwnsieChbJR/Ye9alpaaLEMxvon1fQBQSlx8dT2j99FT2mIlSthAuV/epP2n9wOXUt+q/65uRFDX3KkGe5AkT0kiJfJFJaPL3B4s29teMi+JJbbQjoJQxRQeXKlWnPnj2EWWXMMD969IjnfxWVQzAi78OAAQPEIe5ig5hvN27ckEuYFFTkzhsErKhAk2/pyxJECUeH0fDgJtSyZErrTXL8c3qeQETWNnyYa21nQxCBcdFx/4JoTTbqJzk5gV7E4oICVK/vBJq17RExFkyjK76dj3aqP4U2/dqNqrAgWjmqJfn03kGRmnZC6zyUJ+4UTeszlULcyxNEklaysScnTCizZFKLQkqPj6SXFBEJPmPoYfRrsslfiRp/4EVpTgTryhNnVAMXrczLgwIB9SMkjum0xZI6mfhaJ6hkIa0IMEpOTqIE+NY4VKc+g2uSNblS/S8bUWE8leyNWElOTCYrt1rUqhwRxT6lmMREehH+ghh5kG+TUqKYsuW3ss5HFeoUJaIQWrPtJsVTEkWe20lnI3CzNxS+61e60GQRXXhwkea2dqHwc5focSJxIUtJiZQQG0Yn/+xP3Sbvplctv6FPK+YmTVnJawKb8U8oFF5l5ZpSudwQ0/9SenzYuFFN3xJEFEz/W3aeYogoKSaM7kS/5VNUJbZRuwamz9Nb+FLiIiqRW60IZFgYaq1NHpQI6IQA/AhX0K/zNtPSwF9p47UEKtNlOHVq1IcG1HGmmODVNH3BeYLO9PL4PJq124n6L51EHyZvpwUrVtOitdFUZ/gymlAplHYevAdpREGrVtFJRdg5ks/IeTTEx4HOffcfKl+jMfXZbk8lXMTsQTIlRRyjXwYMpRmbztOjpGL00eDOVMb5PapROS9R+HLq22cRRbh50ntEdGv6p9R1chDZ5iJ6HbyJdt16TWSdj7wa1KP4nStp5W/TaKt1c5o0qyHdOB9OROF0Zvd5ikxKjw9HqjlqMY2o5URXAxqSd61W1DPgCD2+vIP+ug+F8TIdPHWB9h1CG19R8M7DFOGqnacdQWdo57FHGMhT0M5NtP4vbbjo1Dk5tpBegRpyLEqy4eaBwOtwunb5Hi

Question 3

W5V6By7vZvZ4ZT5S6eIkJvUoRjafIsnLJ84rNHFJvHmWJDb9LzfJ7k5eHwpr7EZxR2+xnlLVmcXGyT6dXjULod70aexZ3p9cMb9MC6OJUunIsSoqKJ5XMl22ehdOWBNRUtV5JcUo7uVVylzgcvlPySHl69RpGOpahc8XzpJCZKjaeU7VPdXO7qiIAUhjoCJYtJBCQC2RsBOUzO3v0rWycRkAjoiIAUhjoCJYtJBCQC2RuB/wOFOdCl3SxFnAAAAABJRU5ErkJggg== />

Question 4

Draw structural formulas for the cis and trans isomers of 1,2-dimethylcyclopropane.

Question 5

Draw structural formulas for the cis and trans isomers of hydrindane. Show each ring in its most stable
  conformation. Which of these isomers is the more stable?



Question 6

7ggY2BGCWvL0009nAwcOzA+x2JZQZz35zne+kzFkWlPuuuuu3HirtRAUfW7xPYvHtZV0+ZCEpYCrvbmvmBbTIhdMNz5Z4o5pQZLzZAhbl8Gyw8ccc0y+xLGEGlMDm5KWClDcAAATYUlEQVSU155wSULidjfVsppwLVqTw721hshqlyDlzXVc/763dPpUU+tlERfvH7BwiylfvkuetDy3hEpJmkkSAgmB2giYQllvNoP9xSwmUxktEFhPHFOs2VDv2Eb369/WX6gVbqfPLU3flrOjuvQsCdnFBWEoHdQMdKT87YmNPpyedJz1DWT+ytiXr2AAsma9WSfyAjqzmJds6lM9kYNhQZzuJp6dRZqSJAQSAk1HwCwIOUbWdNGXykUugpyjJ554It8lb6jSqrPl5zFSTH1sTVFeI9d2TK38ppbWqUt7GBACXgR/XhVaCCVqW/EK2WJ7+qyMALJl6pDOYUqQBZ06O1lwJ+pdzbtUeqeOKZKWSren7wmBhEDPRWDFFVfMCbd1TUxVtEIjYTRJpLZOhjFk8cUXz7cPHDgwTzCsh5gXibW2/nRty0XXEvW2PkPxVtxaxzZ3X5cmDM296XRe90DA7IVG3sHg3RKOTZIQSAgkBEoR8Ap6a2Fcf/31+cyixRZbLH9NvfCDdVXMPChkr732yreZHVFNvD8G+dhvv/2qHdKs7WZ+CUtYcrqaXHLJJfmbK9v0raZtlRyRyk0ItDUCMoPNkLjvvvuqXspaB9ZA+Mc//lH1mLQjIZAQSAhYc8Zsu1pvmfVWWmuyvPTSS9MA9tZbb+UJktaDaQs555xzssUWW6zijDCJzxKe2/oNw106h6Ea00rbewYCwgzeJOndCUIp5keXigRAL6myQiPLIUlCICGQEKiGgDdS+qsl1nmxyqI1F+RPCWdIRHzwwQfzBHIJ45aFbwuxBovVW60BIVziTb3WXZB87SV2vK2NvPOmJXXr0q+3bsmNp3O7DwIykr1NTuxORrNZBBYzsXSqNeLrLencfZBId5IQSAi0BwKWhBbG8G4X+XIWDjQ7oilvnm1uPS0k5f0+FpHyum0v5aP3ShP/m1t2vfMSYaiHUNrfJRCYNGlS/r4HiUGSHCUJiU8WM2a6xE2kSiYEyhGY/GE8fN0dMeFbO8WGA/qU7y35PSVGvzA8bn1iZEz+79YZ5lsz1pnzxXjgpU+jeKtInwEbxnYbLRJfviKt5PTSr1NGx/PDb40nR06O3rMvG9/davXoX9EXPS5e+eO5cdPE78QBOywXs/03I27K6Odj+K1PxsjJvWP2Zb8bW63ePyqeXnrN9L1rINAWsZZUZkIgIZAQSAi0HIFJb5yVrRKRff0Xz2bTrutZVv6kD7I79l7gy/fqLH9y9syYL7JswjvZn3aYK9/We9Uzsr+P/aLspMo/v/hwWLb17JHF/PtmD42pfEw25oFsr/6Rxde2y+74ymtWvsg+HLZ1NntENv++D2XVTq9SatrciRFIxK9r8LpUy4RAQqAHIjD94nvHrc+tE5OWWD761rv/6eeKpZb1ptb3os/8g2LhWZn8c8dSA+eKiJEx26KDYsGZG5sY13umftGv3gVnXTNOvOHKWGfSurH+l0vf/LeGvWOmfv3q17fe/aT9nQ6BRBg63SNJFUoIJAR6HgJT4pMXro9zrn0h/vPhhFj58JNiiwnD4/Jbn403R80Xu/1ypZj3jT/GqWc+EdPP2yfGTlou9vn59rF4rShFJRCnjIpHzzgkTrzz/ei1wLfj4BO2j7j+pLh67NZx6i/WiQ8uGhJHXT4iZhm8Unxm7aGZI2LK6Hjy/CPjhGFvxWzr7x1r/+OsuOi1FeLwIYvHvRf8Od6b4z+x0lqHxfITn4jzhxwVl4+YJQav9FkUp0dMiTHPD43Tr3wzZpnl3Xj4iQmx1mGnxeEb9I2nzjs8TrrlnZhzve1j4IiL49rnIgbvd35ccMCyMfHxC+PY81+NOeYcE2OXPyRO2H35qWGPSreWtrU9Ao3RzbavR7pCQiAhkBDooQhMiVEPHBXrbXhWzLjNBvHZ7WfEcZeOiD4Dl40xV58WZz3YK+ac4YMYtvfucc7IDeKAvZaLd/4+IfrWMPcmPvP7+PEuu8Quu+wRR//pn//DtXe/WG3btWPsg/fFnY9+GvPNPyCW7t8nVtx2w+hz+49i4wMvi093uiyu+/mqMd3E/57We45Ybq3+8fK9d8e1510T/5l/jvh4xLPx/vyrxKzP3Rd33/lMfDThw7jlRxvHgZd9Gjtddl38fNXpojg9Jr8Vl+/5wzjtsf6x3ZFHxAbvXhk/2/W4eHTcnLH8mnPHiHvvimuuHxErHXl0rDHq0Rh67OnxyItXx84b7B/3Lrl3HPmjxeLOfbeIYx8f+7/7SN86BIEaTa5D6pMumhBICCQEehYCox+Io3Y+Pd7e4LbYc+V1YsKdj8URi60cfT++Lh54M2Kpo9aLBfv0jXkW6Bujrj4sfr3//XHG2TPGXONHxGWn/CGe/mRK9Jpx0dj2yANjwH+R6zP4kLhg6NbRLybE3094Km574dWpmE6/yHZx+JZHx8N/vCIuemyHWOWFwbH5LhPjiePvjNGxUKy79oCYud/ischsU0+J6NU7ekXEDMvsEgeftE0cf5IlER+LQ2wknz4RV9w5OmKhdWPtATNHv8UXiamnT79AbDzk+Dh63Erx+ZP3x3MjI2LU2zFyYoTl/RUxy5Lrx9oDl4yXRE9eHxUf/O3yuHdsxDxPXRqnffRqfDzprbj7L2/HhDWWqZ2w+d/qpI+2QSARhrbBtQ1KbcUs6JgSo58fHrc+OTIm9549lv3uVrF65TToGPfKH+PcmybGdw7YIZb7Xxp0g1nUbQBDKjIh0M0Q+OSxP8SN7/WNNX+wRvTrPWPESqvH/BHx8cPD4smJC8aumywRM8Yssf4pZ8X379olfrXLL2OzF86K5f/vp3HCry6JtydHzLTyL2Pvk6drDJnec8UGh+4UC/7xvBh69Kkxeb9TYvc+E+Ppj8ZFxHzRd4bqjufe01XZN+nT+PL0vjHt6b1jppk+j7+duG+8ceAJkadU/KdWVbP4YuzYmBQRc66xdxx7xNLxy9/VOj7tay8Eqjz99rp8F7/OF6PixSf/lcfq2v5Oesccg9aI/o/9IixRuteZH8Ty6y4di66yZsx+zxH5tr0v+CQGrz2gAQbeO+ZYbs2Y7bafxF57HByXvfrlGurT3sNn8cTpB8QRR+8fJz4y5n+7uSjXnC1u+8lescfBl0XV0/93RvqWEEgIVEFg8if/jjExw5cD9eR3444Lb4t/Tv4sXhz+aHw6+2qx1ud3xz3DT42zPtgizrt8t+j/9i1x80vjYo4NL463Jn35Lp1xT/08lp8xwnSIcpm6LZv6LWb9xo9jn0ERY57+MNbecOGYPmaJJVZdKE+OfP2D8RFfjI9xRuzIviyzOLf4LL/IzEvEl6e/Hl+ePi4f8MPxH98VB+98Wtw1/jtx6M7LRt9ijmd5GVN/94qZl1oj1OalG26LNyZETBn1TNz55Mj4Yuox6UtHIJAIQ3NRn/JJPHnGLrHX9e9Onffc3KIaPm9qFnT8Lwu6T5EFHU3Kgo7eM0W/+mnQseaJN8SVl/8xTv9qGnQ0lEXd8I2lAxMCPReBr33zgNh50TFx024bxMY/OC5GLLd2LDT95Bgz6vOIz/4ef35l4Vjw/dvjzKNOjzvenTEWXH372Gop2YilMiVGP3ttnHPNK/nGiU9dEmcPezHeeviKOHfYl+8++OThi+L84W99aeDMOCh2PWidGLDp/vGd+XkmZolVDj8r9h00NoYdsGPsMeTieGVixHRTXo67Hnw5nrrjgXgnIiY8e21c+5iBe0p8/Owd8cgHXCHPxf1vLBaHnbVvDBo7LA7YcY8YcvErMTGmiykv3xUPj5ojFl8wIt78Xey0wynx9HR9Iia+GDf/+dn42/D7492IGDPigfjbM/fGX11k/Evx0Pg94tyfrBozPzUkVhm4cmyw320x4yJzRIM+lFJg0vdWRCAt3NQcMMf/PX6/0/fi0JvejgW3PD7O/9nK8d79T8Qr70wf623TP+656t+x7enHxDcnPRjnnnx5vDj7N2KVGV6P/2/v/uOiru8Ajr88+XFyAw78HQoKpxMTM9TVA3NqpdWyNqeOGa5W5piPpZLhsuWjqPlQVIaMuehhZtLcYz6a4jKaqDUePHSZIioaaMbhYR1w0wMCjh933H32gJORPIYIjqXy5g8eB3y/d9/P8/PHfbjv675XYohlZXg+f9r/GReqgvn5klAObtjKmeFLSF41jf52I7vWpZDrMRgvm4Nxv3iZ6Ksy6CaKfz+JsLh8vGZlULa/9RzleCISzuM/fx+mnd+jsKMK+tVH8T2ZRvyq7RTq7mZC7XukZfsQm3OMZwt+266CvouEtGhMG9eRWarnBxveYkWEndy0b1TU76WR7RPLofNvEqVOs2Pju1zQ6TAfzqUxagWJL0zk4paOKujxaCuPseWVNM7rA6ixRbD8taeIaD3t0Z15kX1E4FYVsFspNn6Nf2go/VuvquS0Ya3uS0CAFkeFBbunizJzE0NHDce328+cLuq+PMMXmlGEFG0kxbWMhBkBbWrOWsxFFrxCgvCoc+EX6NOlJ2lnrZkiixchQR7UufwI9HEfqKvBQrGpkYGGYHztZRSVaggOHYy2k39ZG63FGK06Qg2db9s2CLnVYwI38TUibuJDs6nclSMUPrPV7n8ppZwX1ZbJKAbNVD95NFIF+E5Vf/x0l1o00ldFJuQq84fzlJ5+6qGd5UrVHFJLglDeUb9Wa9YmqbhxKIYtU0dqnarszzOUT+AClWUtVTtjfqzSze0vsuJQxpS7Wi7CwsBpan5MjIqJWaBmR2hbfuc/f5+qVEo5itPUfZ4owl5SJ+odyvh2rNpwsl45yzPUXD1KMylZnbOZ1LYH+ykYqmIP1aj6U6uVofn1x6A56tXVj6ngAVPUxgKr+uS5IAWBauFHFao8Y67So1GTks8pm2mberBf64VdHMqYOlH18Zyi3jDa1BfJ4xUMUYtzapTt+ItqJChNRLzKzP9ALRqKInCh+sh6UaU/olOMWaMKagrUmnBPNSLuiKq9iWddDk0EbnkBR5HaNAHFnXEq4YVUlW+75UckA/g/CnSyvuuxdcqtfcd2Ewc/NOE5aR73Nle9NiNHTICfgWfTc6mo+CtDkhbzdu1cEpdNoMFYzNee9/DE1IE0WfL41Axan0HMfiqc0q/Ad9L9jNJp0A68A23FX1ixwciM5D/ww8ENFL6zmuVLl7J0WTy/y2krhdwV9A527HiHdXODr/J0V9B6MDZX0IVkN1fQY7VU56bjDpmnMNwnkNBvZtBXVdB7Kbl0mPix3vTR/CeDJje9o4ragztmxZPw0jNMqD9OtjuDpsRqb1dBj3YHT3UV1FqPsL05g67OY1viWxytdGA68A9Kmt+8LV8iIAI9I+ARQnRSCi8+3J8xi55hfPszGz3zqHKvt4mALBi6MZHO0hz2nIWIufcxSAN1n/+d7EswZuESvt9fg/OrDNbvrmTYgliidMW8n36KPpHRTBsMlkMZnEHPzOeeJPj0uxyo+g7TfxZF84uC+hlrSZ03gML1C1nzuS/+NUdIfm09qZs3s3lrNg2Bftd3tK0VNKUtFfTRu2dhaD5tWH2Z5g7aU+tJRxPfYQWNg+qWDPpKnNXuSDT9+lF/NInYdZ8xwNC8irr2l8tRi82dQbP4lU3sLVOogt8wtvXl2GvvLn8VARHoloAHQx9YTmLSaqLDdd26B9mp9wp09LzRe0U6HbmLy0czyFcGZoYVsveMlQtZmZgYz9PR3215h0L9xROUqL6ERY2kJiuR5DwXox8aRUluIcd259E04HF+OV3L6V3ZVOmmMtvrKIVl/2R9ajmPv7GdJweV8P7fzlKnf4CtJkfLp6GpujxejvC+gQoadGGTW8pja1E5DThpcGfQLSGz+1tzFN1WUl9N4XONirqS/ctiSNzfwCNxMdzZeQaNxi+ce90ZNJnuDJqTWcexSgZ9Nbv8JAIiIAI3iYAsGLo8ES5sl2toopxDH9uJDLOyf/dZGLeAx64EitoRU5no5yRn+RxWnQpmhBeU5hyg0tdMxic2/KdHE+nvoMpSC/YvOWYJJcRRwAcpq9i4z4x30D1E/2h0y1VZ2w7vRito0E1cSWpsOLaMX7Hg6Xi2ujNozmVl8XFm+woaXJWn2OfOoMnPNjJyRQcV9eEK9O4Mmk1P/JS1J/rihZ2CPbvJ3PPfK+iDp4YR/+bzTPbJI37iGCLvX0Kmdwj6bsdcbVJySwREQARE4H8vIO+S6I6pq45Ll50EDPLt8GNbm6pMGKv7YwjW0VB6gSr/kQTp2q3PGisor9MxJMAbGiuw2D1xlZlpGjqK4d3OoDupoHFSay7C4hVCkEcdLr9AroTM1yfRUUXtasBSbKJxoIFgXztlRaVogkMZ3HkGTbHRii7U0Pm213eEspUIiIAIiEAPCMiCoQdQv9W7bDKSMtnA8444Eh4OZc7rSyVs+lYnRB5cBERABG4PAbk09O0xj22juFJBl++rkQq6TUVuiYAIiIAI3KCAvMJwg4CyuwiIgAiIgAj0BoF2J9V7w5BljCIgAiIgAiIgAl0VkAVDV8VkexEQAREQARHohQKyYOiFky5DFgEREAEREIGuCsiCoatisr0IiIAIiIAI9EIBWTD0wkmXIYuACIiACIhAVwVkwdBVMdleBERABERABHqhwL8BgykaqGD85D8AAAAASUVORK5CYII= />

Shown above are the trans and cis isomers of hydrindane. Note that the cis-hydrindane displays some distortion
from the ideal cyclohexane ring structure. The result is that the trans-hydrindane is the more stable.

"

Question 7

Trans-1,4-di-tert-butylcyclohexane exists in a normal chair conformation. Cis-1,4-di-tert-butylcyclohexane,
  however, adopts a twist-boat conformation. Draw both isomers and explain why the cis isomer is more stable in the twistboat conformation.



Question 8

How many different staggered conformations are there for 2-methylpropane? How many different eclipsedconformatio ns are there?
   



Question 9

Torsional strain resulting from eclipsed C-H bonds is approximately 4.2 kJ (1.0 kcal)/mol, and that for
  eclipsed C-H and C-CH3 bonds is approximately 6.3 kJ (1.5 kcal)/mol. Given this information, sketch a graph of energy
  versus dihedral angle for propane.



Question 10

Write IUPAC names for these alkanes and cycloalkanes.
 
 

Question 11

Each of the following compounds is either an aldehyde or a ketone (Section 1.3C). Which structural
  formulas represent the same compound? Which represent constitutional isomers?


 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

dpost18

  • Sr. Member
  • ****
  • Posts: 345
Answer to Question 1




Answer to Question 2



Answer to Question 3

iVBORw0KGgoAAAANSUhEUgAAAUAAAABkCAYAAAD32uk+AAAgAElEQVR4Ae2dCZyN1RvHH2PfMrYs2bLvWyllKSRbiaKNKCUVLVoIpZSdUiGlRUmJFlkiQioJf3tkJ7IzBmOsM3P+n+/h3N657tx7Z9w7c809z+dz533nfc/7vuc873l/53me85znyaCUUmLJcsBywHIgDDkQEYZttk22HLAcsBzQHLAAaDuC5YDlQNhywAJg2L5623DLAcsBC4C2D1gOWA6ELQcyBbvlMTExsnv3bsmePbuULl06oI/btWuXxMbGSsmSJSVnzpwBvXcgbvbvv/8K7S9RooTkypUrELe097AcsBwIIAeCJgHy4T/88MOSN29eqVq1qpQpU0aKFSsmo0ePlgwZMkjhwoUTNePmm2/WxydMmJDouKd/fv/9d33PUqVKSZUqVfQzevbsKefPn5cHH3xQ32fAgAGuSzdt2iQRERH6d/r0adfxYO0sX75catasqYGP+kVGRkr37t3l7Nmz0rVrV12/3r17ux4PkJv6HT161HXc7lgOWA4ElwNBkQDj4+OlSZMmsmLFCsHLpnz58sKHvXfvXunXr59kyZJFoqOjE7XswIEDGgSQ6LzR6tWrpVmzZnLmzBkt9RUpUkS2bdsm7733npY0o6Ki9OXHjx933QZgzJYtmwB+wfb6+fvvv6Vx48Zy6tQpyZEjhwb9LVu2yAcffCDbt2+XzJkz63qZevJPXFyc5gn1TEhIcNXb7lgOWA4ElwNBkQBnz54t69evl6xZs8qiRYtk8+bNGvxoCpIh0o4BAtO8jBkz6uPm/6S2zzzzjAayatWqyaFDh2Tr1q3yzTff6PvNmTNHA4+na3lepkxBwftEj3vhhRe0Wg7oA+q0HX7w/N9+++0S4DcXc96dJ+ac3VoOWA4EhwNBAcApU6ZokKpRo4bccsstuuZIffv27ZPPPvvML6Dz1FykQ9RL7H2DBg3SEhbl2rVrJ0iCqJiAYlrRuXPnNOBj73zjjTckd+7cuiotWrTQJgCkVnhgyXLAciA0OBAUkWjVqlW6dbfffnuiVgJS+fPn18cAM+xkhlBjfUloqJKosgDdjTfeaC7V2/r168ukSZPkxIkT+v9Ro0bJwoUL9T6gyDXBpp07d+o2oMa614+BAPXYqP6ffPKJNhFQJ8wDgCNSsCXLAcuB1ONAUAAQWxZqrq+Zz7Vr1yZqqS/7HPdlAgUbI/Y1J5lnOW1ozvubSQbnNYHeN+3Gpudev6uuuko/Lqn60S4LgIF+I/Z+lgPeORAUFZiZXz70jRs3en36mjVrxPyYKQUEDE2fPl3bxDjGpAeTGkiPgAy2RWZOnYStDULVhlq2bOm69xdffKElR30iiH+oH2owtjz3+iH9QdQdQiI0bf/uu+9c9dYn7R/LAcuBVOFAUCTAtm3bCrO1s2bN0jOcRrV9/vnnZcOGDXomFjseNkJDBQoUkJMnT+p/UQfbtGmj9wGMefPmSd++fWXs2LHa/oca+f3330vlypV1GSZWli5dqkGuYMGCcvjwYalQoYLr/kh/1AFwCiah4vN87HyA2vXXX68fx+wzk0GAM2WoX9myZV31Q3oFNAF3S5YDlgOpx4GgSID33Xef/qCPHTumJTFscRMnThTscoCZL0Lqe//992Xu3Lny6aef6uLcC3r00Uf1duDAgfLOO+/Izz//LLfddptL8jI2Rl0oDf5069ZNq/9vv/22jBgxQubPn68lWNxiADkA0JLlgOVAiHCAcFjBoEmTJqmMGTMSaivRr0GDBq7/nc8tUaKEPj569GjX4VGjRrnKrlmzRh8/d+6cql+/vsqQIYPrHM/IkiWL+vnnn9Wtt96qj/fs2dN1n3Xr1rnKxsbGuo4HYycuLk7ddtttl9Qvc+bMaubMmerOO+/UdXnsscdcj9+2bZurfocPH3YdtztJc2Dy5Mn6Xb/xxhuuQgkJCaply5aqWbNmCp4a+u2331TDhg1Vjhw51FVXXaU6d+6sduzYoU6dOqVatGihy+/Zs8cUVxMmTND3HjZsmOtYUjtnzpxRb7/9tqL/ZsuWTV199dWKvnf69OmkLrHHQ4gDqKNBIzpZjx49NGDR0ehYW7duVe+++6766KOPEj3366+/1sfXrl2rj7/yyisaFLJmzarWr1+fqCwdfcaMGapVq1a6Y/fq1Uvt27dPl/nxxx/1ff744w/XNUeOHNHHeO758+ddx4O1Q/1mzZqlP0Y+PD6If//9Vz9u7ty5ui6LFi1yPf7YsWOu+tkPx8UWrzt9+/bV/ePGG290lYuPj9fHIiIi1PLly/VxgDJTpkyuAcYMyADhqlWrXMf//vtv133os5RjIPNGDHaeBmOu7dixo7dL7bkQ4UBQAZA21qlTRzECJ4eQgkxHXbJkiUKCc47oyblXWpXlgypdunRaPT7dP9cAYL169VxtNQCYJ08eDYAnT57UUh8A2L59e3X8+HE9AJcpU0b3r+uuu04hmefOnVt5AkAkSW80fvx4xQDN76uvvlIAIgOw6bsMhJZCmwNBmQS5XO0en0BDrBGGrrnmGtmzZ485bLeWAz45gH0YezKTYKwxZ+INdySWJTLJtm7dOp/38FYAp378S++991554IEHdNFGjRrJ5MmTvV1mz4UQB0ISAAE7Zn2dREQVS5YD7hxg9p/15ZC7HymTbzjc16pVS4OfuRaneYALp3o8Dph9f+2116RcuXK6yNSpU01Rr1s8HVj1c+edd7rK8f/999/v+t/uhDYHQhIAixcvrpe6hTbrbO1CgQM4xQ8ePNhjVcyqIFysnATwMSOPryqgCQiynjy5hFsVDu/u90/ufWz5tONASAJg2rHDPvlK4wAS1/Dhw3W1AbRnn33W1QSz+ubIkSOuY+wYqQ8gREVmi3tVxYoVdTlcmFjWaAggHTZsmPZtJbzZq6++qlVpQJRVP+73N9fZbehzwAJg6L8jW0MvHKhdu7b06NFDl3AHQMKSseYa53tUYRM0d/HixXpFDmowAAiQEa+xUqVK+j6sKhozZozrqQSzWLJkif6fiEOsdV+wYIFcd9118scff8iPP/4oHTt21Odxep85c6beb9++faLVTa4b2p2Q4UBQHKFDpnW2ImHNgaZNm+r2A4yPPPKIXk7JBNsTTzyhw6ZVr17dL/4AdExymBiT2B2hzp07ayCdNm2aYDdEnSZYLwsB+FkKfQ5YAAz9d2Rr6IUDqKDuxNJICInv448/1vvY+FhvzkQHgWkJVfbRRx/pCRBT3v0+2Bchgu2iFpvoRYAp1KVLF73cEVsggMdsM+vWoQ4dOljpT3MitP+EpArMrNxXX30l3377rR5VW7duLZ06dXIFNOAcnZYlcITahwiV9csvv+jw+LglWErfHCAg7q233qqjb5uWos4SBAPgypcvnz6M5IZXwSuvvCIrV67Ua8JZq86sL2kZUG+REI29kIuQ+Li3kSCRGs0M8VNPPaUBkXJE70EVZo06yzIJu8Z9UIeJV2npCuBAsN0Uk+sIffDgQb2syDiTmm3hwoVdqylYcsRxVo8Y+uyzz/SxyMhIcyhNt9YROk3ZH9CH16pVS/ctVpX4QyzHmz59uj9FbZk05kDIqcAYjsmmhrqCo+mXX36pI6wcPHhQkAQhVBtm7tyJaCvMClqyHAgkB/D3g5AmkTL5eYsshC2Q1A0EwLAU2hwIKRUYFWLZsmXatwqbDSouhJrLjB7xBZ3uCaHNWlu79MIBbH/Gp5A2MdACgknRW2+9JUywEA0IVdtS6HIgpACQ0FHYVbDhsKTIEOHlOY7B2xlOiyRDJr0ms2+WLAeCwQEjAfp7b9xpkACHDh2qZ4pJ32opNDkQUiowqSJRLQgq6h4evmjRovqccTrFh4uYgRir+eHvZQOKhmYnC8daIfnlyZNHXnzxxXBs/hXT5pACQKI2o1oAbu7EMdwMcFqF2BL81AAgNkMTedr9Wvu/5UBqc4DZYCRAIoMzU2wpNDkQUgBYtWpV7VhK9Gcj6cE2vPhJqs66S8pAgCHuB7i+8MMNwZtdJjTZb2uVnjmA6xbmG9Rhq52E5psOKQAk9BUzaPz69+/v4tibb76pwQ0bYJMmTVzH7Y7lQChzgEF69OjRevKOwdpS6HEgpAAQu9/IkSM1AI4bN04IgYUBmYXoOKuSbJwkSUyS8L87AZzGe9/9nP3fcsBwgH6yYsUKad68uV65gcO9WeZmygRqW6dOHb1iBJsgXg6WQowDwfRDJEIu0XaJxrtixQpFxF5/6P3331f58uVzRdYlfPlbb73lurRYsWL63Pfff+86hpMqztHlypVzHUuLHaIAb9iwQd17772KyMSWQocDpCUYOnSoqly5su4r9KucOXPqXB5EjSafzIgRI/T7C2Q0Z5z76QtdunQJCWb8888/6pNPPlHk55kyZUpI1CmtKoG0FTT68MMPdUcrXry43rKa45FHHlHffPONIg+GNyJ3x5dffqmGDBmizp49661omp+jfiRkeuaZZ3QYfLN6hY/LUtpygLD4X3zxhStRVf78+XWemv/9738aBHhXw4cP1zlcnnrqKVWyZEndV0uVKqX4n9wugUik9c477+j7Llu2LNUZsn//fh2yn0RcpGmgzSRvKlKkiCpbtmyq5MlJ9Ub7+cCgASAAV7BgQfXAAw/oqpDTg4xvzZs31zkUGHEbNWrkdcT9+OOPQza5DImWJk6cqCU9JAmy1NWtW1cNGDDA1cnIPRHuhCR16NAh/XNqAAATx0+cOJGIRQwms2fP1sscTSbARAX8+IfnLFy4UD388MMqV65cOu9H27Zt1bRp0xINpgyyRYsW1RkFTT2MBA8oIhHST1l6SVKvMWPG6GxyflThkiJkM6xSpYq64YYb/NaELrmJnweOHj2q2/r000/rZwJ4SKB33XWXTr71119/KdoJGHNu7Nixft45/RULGgC++OKLKnv27Gr37t2XcI0RlZHV04i7adMmV/lQAkA6DOt7SZVIJjAyj/Fx3X333TrbHWoOBADSqfiRICfciYHC8IOMgIaeeOIJfbxNmzbmkAY9PlRTni2Ji/bu3esq422HvkOyJJNiFbDh46YOSdGCBQv085o0aeKxCAM5GguaS6FChXTZihUrqhdeeEFxbXK0E/OsTz/91OOzUnowJiZGzZkzR7300kuaXwzGpAAlqRP9FWkXc5QneuihhxRSMaAZjhQUAKSjk22rf//+PnlqRlxsL0iE/fr1c12T1gBI554/f7569tlnXVIdKhJpE0lvSU5YJ2H7Q2Lgw73++uudp8J2H/AhaxqDhRMAu3btqvl0xx13aN6QOZByDCzYce+//34tefExo6a589owNCoqSoMc6THhO+YWQHDjxo2miM8tQMm1mDG8EZIltmxyESPtUzds3AyC9FV/gLpdu3Za/fRlAvJWD1Kn/vLLL+rVV19VZMWjz/G9kYL19ddfV7///rvfwIxdFLB05tH29uz0di4oAIiofc011yjUnOSSs6MbAPzpp5/U888/r8EoOSNucp9NeaPaMnFjVNubbrpJDR48WKfnBLA9ER/HzTffrD8kPianJOupfLgc8xcA+XjhGx+04fHmzZs1CKJJoL4aog/88MMPGnj48LG1kuwcCcupZpvyvra7du3SYMbEG6qqv4QKj30RM0/evHl1/YkcwyBOXmpPUhcTELQnOYCDqv7nn3+qQYMGKSRVVHIGCoD75ZdfVvPmzbssOyVaCyAajn024ACIxERHpmNcLhkARPUEhBhxkSSw55BY3Z8R11cdjATqS7X1dR9ULdrNj1He0gUO+AOAp06d0tIfkohzZp87AIjwFIkQYiAsUKCA7gskLscOiwp4ucSAx3OefPLJFN0KkFq8eLGWPmvWrKnvBaA++OCDatKkSYpc14YM4KAxeCJAfPXq1drzoVWrVlrKpG7Vq1dXzz33nJoxY4bPSURP903qGCYpJGcjjSdVLj0eDygAMuJVq1YtYIZeA4CG8XQiOhOdyrjJ0NlQeZIacc21zm1yVVvntZ72sXOiCtFJkUiio6M9FQvLYwYAM2bMqPkDyPGDV/z46JggY2BDkkNCclKfPn10uRo1aujD3bp1054BqG6BJLQVpCAG2UBIQnv27NGDNIM1beO+DOJvvvmm7quYUpDmGID58UwG0XvuuUfb5OBN+fLlFbbSqVOn6gmjQLbX/V4kdueZmHbCiQIKgMbtZcmSJQHhoTsAOm8K2AJ6qBsmYCWgiDriPuJynTfV1syKOe/v7z6d984773R90L169fL30rAoZwDQAJ77FgDENghIAIzuwIYdmWsYWINNqKU8Cxsk7zVQhFkHzQjptUKFCvoZRmVGjWUmmucihTFzjVTrzodA1SWp+9BeAJqZaqTZcKGAAaBxe0E6CxR5A0D3Z6AOUx6DNNIYIy6GambCsM2ZWVtGWKJHm1lb9/sk939GZ/NR81xPdp/k3jM9lTcACMBh00O944dPGnwDAI8fP65dUSiDPctJt99+uy6HKhhsAqiwz1GvUaNGBe1xSLzvvfeedhNDskVw4FggQTcllQ9Ht5iAAaA3t5eUvAyuSQ4AOp+BiosfGK4KOF8//vjjHmdtndekZJ8ZSBxKDQCOHz8+JbdJ19c4AdDbLDCmDAat++67z8UPrkUqxOiPVJQahOM97zNLliwKB+Jwo3BziwkIACbH7SU5HSqlAJicZ1xOWZY2GfBj1tvSpRzwFwBZygjoYCtEikcCQyUEFDFtXI7byKW1SvoIUqDxRWzcuHHSBdPpGWyXDDpMtoQDBQQAcWZNqduLNyaHMgCa2W4DgKFuPGamD/+x1CYA0PDIKQEymcHx1q1bu6rEZBamClOeLeC3atUqV5nU2EE9NXVwn5VOjeen9TPwcwwXt5gMMPty4jMsXLhQh6j64osvdDrAy7mX+7VEeV60aJFw71Aikt2Q84H8shAxCv/6669QquIldSHGYoUKFfQ76tq1q1SsWPGSMsE4QAgzk66gbt26rqRVW7dulT179uiUBoSQN7R7926ZPHmyUN8qVaoIKU7JwZGaRPDdYsWK6ZiURHWmTs60malZl7R4Fv2b/lGjRg2ZOXNmWlQh9Z55OaNNoN1e3OsSqhIgM71GQmC7du1a96qH5P8sKzP1xvGYYBNpIRWGJHPcKuX062RmNtwoXNxiLksFDrTbi3snC0UARB0zPm2ACQvmrxRiUsgAoNmiYuL+kZylY1dKey+nntgCmUAzfMLJOZwoXNxiUqwCE0CyXLly0rRpU527Nxgya6ipwKhzhDhftWqVbi4h+Hfs2KGDtvpqPwFc0zql59KlSxNF2nav8y233CKPP/64bqNNLyA66Vb37t01mwjOu2XLFh2Q151v6fX/5cuX675ANOunnnoqTZo5ceJEGTBggP7OCJj84IMPChHiS5YsqU0obdu21dHiSYtBvnCIwMlTpkyRJ554Qp5++mnv9U7pqBYMtxdnXXBlCTUJkIANRiJgy/Ipf4lwS0wUpeWPkE5XKo0cOVJHOiGuniFWBhHUkx8uSYbwzaxUqZKeQWZG89FHH02RYzFSoHFS5n0TfCDUiMmtlKx/9rcdaekWwzpno22ZLe8BrYXZalbP4CXAMefqq5YtW+pjBNzwRSlSgYPl9kInxpcO9wNi6WGH6dixo682pMp5HFWNkywM54WEo59YqjDbw0NYXw3fO3To4DrLEkSO8TPrwpnBdH4s5jwhn0wZ1w382HHaApmhXr9+vR9XBa+IeyQYQrMR/otQWCtXrgy4M3VaucVs2bJF+3/iGkWEG+Yb+AYxSwB6LDEEAFl8QBknAOI0z3sPGgAG0u0FyYjACVSaqXfTYdkS4oiILISjIrZeSqLLBKIrYg9h3aazbv4umudaVjr4+gVzFA8ED9L6HiZYgXNABACR8BiYALedO3e6PhomqojswkdiPhqiFCWXkAKR2s27ZyIpNVf7eIoEY+pSp04dV73MMdYPs3yQACKBorRwiyE4CXhADEYn4RCPYzzvncEo1QHQBHW8nGgvRP/49ttvddQUGmNenvsWZHce43+ACOYQLTi1lg5NmDDhknrg3+Yvbd++XUfibdq0qQ6W4GyT2Sc3Ax9bWv9Si6f+8s6U8wcAcZ4mGAXSnrMd9FVAkl9ywl2ZZzulQN4Xkc2DRQyE9G1y4DgjwZh+4twa9c95zLlP9BhWtuzYseOyqpsW0WKI9ENbnCuDaAShy3iPAB9RcdhSjhw8mDr4GUEq4BLg5bi9YNNDimMEZ82n80V522dhelLnGR2wURD8IFBre917yoEDB1yx3kw9nEFb3cv7+h9JkAjDnTp10mGdzD2JhGL203KbmtKNL145zxsApO8Q6p0fx1B3jQSIjRPeoR45icAC5qNJSZh9dymQe/EhBoIAaqRUEoGh5gPevt4/qrhzCaav8pxHm2KASIkZgHaapGOp5fBvwqDxnp2Exsggx2odviMDgJ54EHAATK7bCx8TEiMVwXDpqZLux3i5vKzevXvrMN8AEJ75RKrwJi1yH6LCYDhlHTCAGwgiDp2zjgBVoJZlwR8i2lBnAjcgGVvyzAEDgM53YfYNAJqgqoSQchISDFIBH01KIxW5S4GArVPKdD7P1z4hvwiLjzDgnGQx7fG0BRgBSBMaa926dTpHCZKP013H07XOY0iNuG598MEHiWIU+qozbeUbJKNeakSLMYOZM2UCdWT+gW+QgZDcMQYAkcqR9PmZ1AUBBUB/o73AKDoZGdL8eTEAHiGBDOCB8N4IPzzEXJMa0/lynfswiUgjgCdRSFLSWWfOnJkI/Lg/KkWwKCV1DFZdQu2+BgBZH0xKR34Yx50SIO+bd+RcXkc7TBRmPhaAA5sWHxAfGbPK+ED64r27FMhzkIr8IQZxHIudWdmcfdXTPjYuAB3JkIkIb0TdmTTAawLNgox2nu7pfoxBAR58/vnn2kbt7RmcW758ub4vg0EgCbWfSDS8T4QfTF34rCLpETbMCbg8m/PMDfDeeKf8H/RJEG9uL7wAItgCYiatoDuzzf+MQET+8BfwvDEaiYmRjJkwpADzDE9bOgVRYb777rtEzErq/gCxO8gixabVRExS9QyX4wYAvU2CmI8jMjIy0UQF0cPJN8KgiNTNx4L6BCABqPQXZlKRGOgfSUn47lIgUpknW7CnrGye+qTzGGBUtWpVRQBYwMwXIPt676jomIbo897MSKYO8AfTARImEnNSBMDS7stNooQLEyuReJ9E+KYexCIEZ9AasVvyTQOCrMTB4wLNDimeQY9jqTYLnJTbCxUAtcmSZRjpvgXwcGlhJpfMVb4kvKQY7+s4HYYlaSyyN1nB3Oti/oeBxAgkNDm5FjzZvUh8ZMqb7bvvvuurGvZ8kDjgDwAiKZmPBi0BcEIbYeBC0zBh9Z1VpN8wY4p9jJStmFnoH9igkBSRTEz/8CQF8iF6yspm+kxSW74LBlhs2CSEulzAc7bJ0z5SKKBPvybJVFL14jgDBXE90YDcTUkpdYtxl/JoP1I4M/MIMZ5sqgw4vAv3uiLMMEiBP+acUwIMuB+g0+0FdWLo0KFaijMPd99ioKXDTp8+PWiA5+klO48BtKhJqBG+pEPEbOqLpIBrBXY5XpCzXSSRtutmnRxO3X1//QCxBXn6aLC1eZLW3FuBVoGhn+jNSCT0AQCU2UjsdiQmcvYL3E48Pc9ZxuwjvTC7SUBed2DxVA9s7qjswSAkOACOgcJIwaaezi3SNGXImGcGAn/dYnxJeb54QLsXLVqks0UiJSLY8GwjoQPqSJD8nPbzcePG6feFhOmLfDpCG7cXHoIR1Mkcsw/AYMTHnmIq5+vBqXme0RXboTMPsam7py0rC9yP0xktpR0H4D+pB7BzGcJxngjf/JwSAKHKMIvw8WKHZpLJH/Az93VumUFmIGWywYSxBzAAPmxPpD917yvmf9RaQvmzgsTf2VdUPcrzwXfv3t1ZlaDuI8Wi/uJ6k9SEJZMLSJBgAtIrNlcnpUTKc16fFvteARDjY8GCBT2+YJxDGRlSO1ZbIJjEh0OnZjYsqZlljLGmI1977bUp8h8LRF3tPUKHA0hAS5cu1aYTIwwAcs6ZXDQFhAUkFwDBX8J8gzoNqNLvateunaYaB9Ib0hb2etpovgWzNc7hgKY3W54/Up6/PApGOa8AOHDgQFfDEfMBhTFjxgTN5y4YDfR1T9Op8Tdytx0a42xqhWP3VVd7PrQ4gBqJXyGmkV9//TXZUiYAiW+s+yojZjhZ9hUqhPM4KjBmACMFM2lCPQFEX7a8UGmHp3p4jQYze/ZsHU3h66+/lsqVK7uiLXgPr3Blnz1w4IDMmjVLaDMBO3PlyiXLli0TIlFYshwIJAcIokvEkiVLliS67TfffCPt2rVLdCxU/iF+8qZNmyRz5syyf/9+OXr0qLRo0SLVg9YGih9eAZAPv1u3brJmzZpAPe+Kus/58+d1VOAiRYpcUfW2lb0yOECkacJtZcqUSX744Qdd6R49esjo0aOvjAakg1pGpIM2BK0JjHIW/ILG3rC+MWkC6tSpo7WLzp07a17Url1bRo4cGdZ8Se3GWwBMbY7b54U9Bz788ENp3LixzjuyYsUKadOmjTRs2FCmTp0aVgFXQ6EjWAAMhbdg6xAWHDh37pw8+eST2u7Xvn17nSyKSNMQyYfKlCkTFnwIpUZmCqXK2LpYDqRXDhw6dEhPbCxevFiGDRsmL730kg7lbtobTlnnTJtDYWsBMBTegq1DuubA6tWr5a677pITJ05oD4OWLVum6/ZeSY2zKvCV9LZsXa84DuBOVa9ePcmRI4ee8LDgF1qv0AJgaL0PW5t0woH4+Hjp06ePPPDAA9KoUSMNfiSmtxRaHLAAGFrvw9YmHXCAlLGtW7eWoUOHahCcMWOG5MmTJx20LP01wdoA0987tS1KQw5s3rxZ2/twcp48ebLcf//9aVgb+2hfHLASoC8O2fOWA35yYM6cOTqR+KlTp4TZXgt+fjIuDdizQx8AAAtBSURBVItZAExD5ttHpw8OsD52+PDh0qpVK6levbrg3MyqDkuhzwELgKH/jmwNQ5gDSHsdOnSQ3r1763Xz8+fPl6uvvjqEa2yr5uSAtQE6uWH3LQeSwYGEhARp0KCBrFu3TsaNG6dXeCTjcls0BDhgJcAQeAm2ClcmB1B9a9asKQsWLLDgd2W+QrES4BX64my1054DxIj85JNP0r4itgYp5oBXCTA2NlYbc0+fPp3iB9gLLQcsBywHQpUDHgEQkb5ixYrSpEkTmTBhguTNm1cbefFuh4hkkSFDBhkyZIirXUS3jYiI0D8CiVqyHLAcsBwIdQ5cAoBLly6VO+64Q3DoJEJF6dKl5ezZszpQY5cuXXR79u3bp7cxMTGu9gF62bNnJ8eI/rlO2B3LAcsBy4EQ5cAlAEiI7jNnzmiHzoMHD8r27dvl888/1zkAyFUAMCLpeSJCeyd1zlN5e8xywHLAciAtOZBoEiQ6OlrWr1+vEwENHjxYsmXLpuvWqVMn6dWrl0RFRcm0adPSsr722emMA/HRa2XmjJVyFOtK5iJyyz0tpEyO/xoZH7VCps9aJ8c4n6WoNG7fXEpl/e98Wu4lRK+TmTNXSFR8Dinb7G5pWDTLheokRMu6mTNlRVSCXFWlpbS58eoUzDYmSPS6mTJzRZQk5Cwvze6pL0USfa1Jtzx20xR579tz0urZDlI9t2dhJemrw+yMM1Xc4sWLFdnrSYF58uRJ5yl111136RR4bEk6bfKD1qhRQ/EjaTI5diMiInxmvU90Y/tPmHMgTh35pae6VkSJZFfNJu1VcS6OnFbrBl6nMulzNdXQtTHK/0y7rpukcOe82j1tkPpgXayX66PV/EcLK5Hcqu2P0Y5y8erQtLtVHhFVuOtvKsZxJlm70fPVo4VFSeR96qdj/l4ZoxY9erUSyaPaz3HWyd/rw6tcouHBTF4w2UH8MiflzJlT/0tYbyetXbtW+KEum+ud5+2+5YB3DmSUvOVqy0133CiRclrmjvxStpouFrNCpv1bR6oj+eS6VqqWyCWJOqz3G1/G2QQ5vmyI3NvpfVl5LMHLfbJJvqsTfycXCkdI9nz55IL+5OVyX6ey5ROPt/d6XS656Y2pMvGzb2VEo0ivJe1JSSyZ58uXTwA/JjN27dolpUqVcvFo27Zter9w4cJiJj9I5vL666/r46tWrdI5hK3LjItldicZHMhZu7t027pMhq0ZLeNWPiXv3pRdDi6cLuqOmyTy0w/+u1PCSflr4isy+NdsUjbHLjlYrocM6V5Fdn7cWwZ8/4/kbtRV6u14Tz7aWkPe+PodaV1EJHr5eOn/4Q7JX+C4nKz4tLzWuZq4NMOzO2VKv74yL0tVKXZ8k+wt/5KMum+HPNuuvyyNyShHR7wgIzIOkSdyzZIRE3dKzlwHZenKs1L3mYHyQtO8F+t1VnbPeE0eGParbM15m/QeO0ha/FfjC3vx0bJ8fH/5cEd+KXD8pFR8+jXpXC13IkCP3filDBjyiyQUOCWbDleXFwfdduFaFSvrP3hYBk5aLRlv7CFj3+sqVXIkSMy6SZfUqef1u2Tcq8Nl5p5IOVy9sjRcOiAJvtg815q5ToE3ISFBZ3vPkiWLGjVqlOtUVFSUIhN8jhw51LRp01wqcJ8+fVxlVq5cqa+1KrCLJXbHTw7E7/lCdR24VG38sIHKLKIi2/2gDp3Zpj59epRau/db1SSzKMnVVs2KjlMHvr9P5ZeC6pGFJ9TpNa+ospJdNRq3TR3X+6LkmrbqtVfuVCUK1FMjNpxRcbs/Vy1yiqo0aIOK+Xuwqpy5lHruz//MO9Gz71GR2Rqqj/6JU+e3f6qefP1PdVLFquUvlFQihVXX32KUOr9dvXddBpX55rFqe+xW9XZ1UVLoMfVrzGm1qk9pJZJZNfjoH3V65weqfmZRmW54W62c/5gq5FKB49Tuz1uonFJJDdoQo/4eXFllLvWcclRDxR+apToVElWi51IVvXGoqiKi6oz5UfUuLUoyVFG95/2tfnysiBLJpzrOP+GlTifVkh7XXCx37CKPLuWLn68m3RdLpFHg28eEB2sc+/btK2PHjpW5c+dqf0DU2yxZskjTpk3dxzb7v+VAADiQSYrf85K0jRQ5Nn2kTJ73rayq3VoqJ9Ijo2TRmO8lSgpIucJZJVvh8lJQTssv46bLrvgIycA8SuWO8sybM2TX4cXyYuWscvTPz2R+7AUpcOD7f0jU+X9k3sJdcvZijTPlzCtZz/wmXatdL52nFpGXX64rF4w9jiZlKiq3v/i69Hm0lsQuny+rokQkerdEGVVdskmBonkkW5F60rS0SNz/psqy45jJDR2VPz+bL7GCFDhQ3v8jSs7/M08W7jK1EDmyYJRMPihStGZJiSz3uHy9YJFMurfQBQkxV3lpWKeMlK2QX0ROydGTcSJe6pQhAk5cpAye+WJOh/s2EQDCjBEjRuj1jaiyZKlv3ry5rFmzRoMfqfuwBRqHaHfmkfQF8LRkOZASDmTI30Se71JS5PxieanXBmnSolRiG03CWTlxAif7CMlIz43ILBn51k8fk9MXfPQlQp8wT0+Q8ydjhSvy3/ykvDF6lhxQSjb0rSxmIjlXvWHywzsdpLpaI1/1aSF1us6Wo5d04QjJnv20LBvZTYZvLCwVwSFPlDGb5GIiWCVIghP/Es7LyVhdC7n5yTdk9KwDotQG6VvZ1CJeTkUd1fWM2X9MzmXMK1Ub3yLlXXq6p4f5WaeLlybmi6f7heexSwAQ15dly5bJd999JyRwIWEz0iA2wfr162su8f+7776rw34bthUvXlwf4zj+gJYsB/zlgEpIkPjzIFgOqdXtObk+QiRfvS7SqBDdUzE9LJIQJwkZCsoNLcmrEStHYuIk7uRhOalEitzaRK7NchFxlBN5IiRPpbpSTEQ2Tp0l28+KxB9dKXNWRMlFvJTDP70jq5t8Iqv3rZX3W0XK4ZXr5GCciBYnJV7izsfK7qVfS/cOQ2XumRby7IOVJeslAHnRJ+LsIdlxVEQqNJfaVzmksIg8UqmuroVMnbVdzkq8HF05R1ZEmVpklILX3yolRWTDhImyivUF8TGye1eMeHqU5mv0T/K0rzpR0PDDbP19KeFSLt0r+baBIc2BuCP/U58/f5PKX6qdGvT9ZnUybr+aem8j9drq0yr+xHr19StNVaR2g8mvWg74QW07uFQNvq2Eqtx1vJrUr4EqVbeX+nn/EbV0SAOVnXKF2qsxfx75z5Xm/D41q2cdlUtEZS9VSzVsN0AtPGQcbeLV/s8bq7K3dFdvT5yg+jevptqM36bOqji196s71FUiKnP5u1T/WbPVc+XB4cyqXItHVIeaoO01qtOXG9WyfrVU+QbNVMvuY9WXI9qqEsWbqaF/7lSL+lZXESIqY81+6teoOHV+3yzVs04u7epTqlZD1W7AQuWqBm8o7pBa0PsGXc/MxeuoFg+9rMZ/1U/VzcpzK6iXflqqxt4RCbqrkt1+UHuP/ame91Cnh8ZPVf2uy6REMqhqfX9UcwclwZeQ7hWpV7kMPCpcwN62M71w4Jwc3vK37IkvLJUqFJZsl+gxl7bzbNQO2R6VU0qXLZSofNzxAxKbPbfE7tguJ/KUlfJFclycmY2T47v/keNXlZISkZkk4cxB2fHPWSlYtoTkPrdftu2LkBKlC0qG48dE5cknmY7vkE37IqRYhVISmaQCdFaidmyXqJylpWyhbIlmgC/UOEFO7d8sW47mlGsrlJA8Sd7nYmmPdUrcvks5YY84OWAB0MkNu285YDkQVhzwY+wMK37YxloOWA6EEQcsAIbRy7ZNtRywHEjMAQuAiflh/7McsBwIIw78HzwmOx+EY5b9AAAAAElFTkSuQmCC />"

Answer to Question 4



Answer to Question 5





casperchen82

  • Member
  • Posts: 540
Reply 2 on: Aug 23, 2018
Wow, this really help


Joy Chen

  • Member
  • Posts: 354
Reply 3 on: Yesterday
Gracias!

 

Did you know?

In most cases, kidneys can recover from almost complete loss of function, such as in acute kidney (renal) failure.

Did you know?

The eye muscles are the most active muscles in the whole body. The external muscles that move the eyes are the strongest muscles in the human body for the job they have to do. They are 100 times more powerful than they need to be.

Did you know?

Many medications that are used to treat infertility are injected subcutaneously. This is easy to do using the anterior abdomen as the site of injection but avoiding the area directly around the belly button.

Did you know?

All adverse reactions are commonly charted in red ink in the patient's record and usually are noted on the front of the chart. Failure to follow correct documentation procedures may result in malpractice lawsuits.

Did you know?

Although puberty usually occurs in the early teenage years, the world's youngest parents were two Chinese children who had their first baby when they were 8 and 9 years of age.

For a complete list of videos, visit our video library