This topic contains a solution. Click here to go to the answer

Author Question: Draw alternative chair conformations for each substituted cyclohexane and state which chair is more ... (Read 86 times)

casperchen82

  • Hero Member
  • *****
  • Posts: 540
Draw alternative chair conformations for each substituted cyclohexane and state which chair is more stable.
 
 
 
 

Question 2

6k7I8AhBZGPmKYBUUAtkTkacnIkA8O3AiQoZ7Eg00akxnmQPDAQMIqMVkhBIoIYoGVIbCxw376/vvvMwgaaLZQGsyNxAyyaAPsido+OBn2M4S/FZyL4dwoSSKQExDYu3cv93uD3125cuVSOP7r036se0ZgDwTpUNP8+fPpq6++Uh8yi304hsO5GT67cIKGryPWCmPNNhy6ESvA3AmLPBBAxt3dnfsHa+NXCkNtqMhjEoEsRODVq1c86gocmZ88ecLvhJUiK1asyLCAzUJ2c0zV1jmmpbKhEgEzQODhw4d8RQdC3WG5HAirJaAVmnNEdDOALstZkMIwyyGWN5AIvEEAw0uE1cdadCwjwxJHLN1cu3YtYS2xJNMiIIWhafGXd88hCCxbtowHDHB1dSUE+ICtDcFysVYfW0mmR0AKQ9P3geQgGyOAgAKIztyjRw9q1aqVEqkdTcawGMckmQcCBo10bR5NklxIBMwDAczCIqIKoq6MHz+eR2fPcRnnzKMrdOJCCkOdYJKFJAL6IRAcHMxTrmK2eOPGjdSuXTv9KpCljY6AHCYbHXJ5w+yOwKZNmxRfNiQwk4LQMnpcCkPL6CfJpQUggAxuEyZM4C4zCPyLiZJKlSpZAOeSRSAgh8nyOZAIGAABRFnGJAlmh5FZburUqXqnqjQAG7KKTCAghWEmwJOXSgSAANJ2YigM/8ElS5ZwoSiRsTwEpDC0vD6THJsRAkji1LlzZ7K3t+e5STKTH8WMmpUjWZE2wxzZ7bLRmUUAwZNnzZrFE5d5eXnxxGBSEGYWVdNeL4WhafGXd7dABOLj48nf358GDRrEI7cggxzS2UqybASkMLTs/pPcmwCB48eP89SZM2fOpEWLFmUqNawJ2Je3TAUBvUN4IScxImwsXryY4uLieBJ1JGX29vbmt8Dxixcv8vzJyHUKevDgAQUGBvLlR9jqk7c1Fb7lYYmAyRCACw3yZtvZ2ZmMB3ljwyOglzB89uwZ1ahRg8+eqVlB5nokkkdIIiRlx5dz+PDhNGXKFF4MAWCrV6/O9xHLLTNJ1tX3lfsSAYmARMBQCOg1TEZmemSpz5s3L23dupWw5Ehof927d6eoqKhUtT5cI9dlGqrbZD0SAYmAoRHQ2bUGwwI4lGJo8PPPP5Ofnx/nZd26dVSwYEHC0GHHjh2G5k/WJxGQCEgEjIKAzsLw0qVLXLND2CGhDYJDBwcH8vHx4T5WyJMgCPtwOQDBhohQRpIkAhIBiYC5IqCzMHz+/DkXhrD5aboRFC9enLcPIYsEXb58mbsfiP8QojKsuUAjp2+TKOriVtpyLpKSiMjO4wPq2LIMOSiwJFHE2c207VI0P5+rSGPq3KIk5VbOm3YnOeoSbd16liKSHMizeQdqWCQXZ0g5npyXvFu1o9qFdH69VA1KpqhLW2nr2QhKdvSi5h3fJw8dq4m9sppmrntNrb/pRlWc9bKAqe6fg3d1Tet3/PhxljdvXmZnZ8eioqJSXObn58dzkX700UdK/lc3Nzc2aNAg/mvevDnPsYw0g8jPKkkiwBKfsr+GlHqT0zZPc7b8fuJbUOIusYn/sX1zrtpkdjHGiOknE8LYxp/msUuxb9l5dy+K7evlzoicWfvtqnch6Qnb2AHJ091Z78Mx716m65GofayXOzFy+YTtitb1ohh2sFchRpSPdd6p4knXy2U5pvPno0qVKgRn01y5ctGxY8eUzwc88TF7DFuir6+vcrxnz540Y8YM/ps8ebJctK4gI3c4Ajb5qWyNuuRX24UobjdNW3GdXv8LTczZjXTXpwqPIuJUqhIVd9L5Mc0cuMnP6FTAx/T53HMUnZxWVfbkWuitHquUtM5Drq72yt8M79i7krbq067PiepOWEPLlqyjwEbmn7oz7baY5qyOCjiRo6Mj9yk8fPgwD2MOO6GbmxsFBAQQfA/hO4jF6phkkSQR0A0BR6rRvw9dPzWFgo8a21IAAAbsSURBVGb9Ruf6zaC6eR7Tgc2M/Oq60OJ5b2tJfvE3LRs7iQ7Ze5LDncdUdkAA9fe+Rb+PGE8bbjtTo971KXTmQrpedQL9+Wtb8qAoOr1gHM0PLUAFn72g8gP/Sz0qO5MiVuNv0eoxo2lPrkpU9NkVuu/1LY0uMYM6jTtJMTaRFDg0kGwCvianbYG07JYjOT0+Sefi69CgiUOpqbLYJJ7CtvyXuk45RNcdP6QRc0ZR4bcsv9lLSocPiqWQFeMp4K9kKvjyCoVX+Y5+HpjvzbUslv6Z9wVNXH6BbGoPoDkze5O3fQxdWv4uT03sz9Jv30+lrfdc6HFpe3JcPkU7LjaaDMr/CgL6aMchISHMycmJD18w5HV2dub7NjY2bNiwYbyqevXq8WPDhw9Xqr5w4QIfXiOjvRwmK7Dk8J0kdu+P3mziyRA2v4EdI3JhnTY9Ya9uLGYDp19k99c1YXZEzKn9NhaV+Iht+KQAI7ee7MDzOBY01pNRnkbstxvP3uwTsffa/5eNbVOcFawfyIJfJbKwpS2ZI1VgPwXHsMuTKjK7koPZiRdvIY/a0ZG52DdkC28nsoSbi1nfH06wF7Gn2dASxMi9N8MoN+HmTPYfKztWb85NFnv9F1aFiBX2P8RiWBw7P6o0I7JjDRbeZnG35rH37YjZ1gpgf/QsrBomp8dHEnuy7XNWmIqzISejWMhkb0bkw+ZfPcNGlSZGVt5sxJ7LbLu/ByNyZZ/te54GTy/Y8QHv/VvuUSq4vG2/3HsXAeVDqUjHNHbKly/Ph8RNmzblrjQxMTFUuHBhmj17No/fhkvhXA2NsVixYkpNmHEuWrQolSlTRvoaKqjIHY6AbTHqOKw9uVA0bZ62ivasO0812lakFIPNiIM0e0MEUcGy5J7bnty93Iji/qLfNt8hK2srTMFQxc8G0Y9b7lD40e+oYu5IOrFkH8Vy7XAizT0WQQm399CBO/EK6LaO+Sn3q8PUu3JN6rHGg0aOrEOOytk3O7ZFmtF3P4yiXtVj6fS+8xRBRFFhEcpwnsieChbJR/Ye9alpaaLEMxvon1fQBQSlx8dT2j99FT2mIlSthAuV/epP2n9wOXUt+q/65uRFDX3KkGe5AkT0kiJfJFJaPL3B4s29teMi+JJbbQjoJQxRQeXKlWnPnj2EWWXMMD969IjnfxWVQzAi78OAAQPEIe5ig5hvN27ckEuYFFTkzhsErKhAk2/pyxJECUeH0fDgJtSyZErrTXL8c3qeQETWNnyYa21nQxCBcdFx/4JoTTbqJzk5gV7E4oICVK/vBJq17RExFkyjK76dj3aqP4U2/dqNqrAgWjmqJfn03kGRmnZC6zyUJ+4UTeszlULcyxNEklaysScnTCizZFKLQkqPj6SXFBEJPmPoYfRrsslfiRp/4EVpTgTryhNnVAMXrczLgwIB9SMkjum0xZI6mfhaJ6hkIa0IMEpOTqIE+NY4VKc+g2uSNblS/S8bUWE8leyNWElOTCYrt1rUqhwRxT6lmMREehH+ghh5kG+TUqKYsuW3ss5HFeoUJaIQWrPtJsVTEkWe20lnI3CzNxS+61e60GQRXXhwkea2dqHwc5focSJxIUtJiZQQG0Yn/+xP3Sbvplctv6FPK+YmTVnJawKb8U8oFF5l5ZpSudwQ0/9SenzYuFFN3xJEFEz/W3aeYogoKSaM7kS/5VNUJbZRuwamz9Nb+FLiIiqRW60IZFgYaq1NHpQI6IQA/AhX0K/zNtPSwF9p47UEKtNlOHVq1IcG1HGmmODVNH3BeYLO9PL4PJq124n6L51EHyZvpwUrVtOitdFUZ/gymlAplHYevAdpREGrVtFJRdg5ks/IeTTEx4HOffcfKl+jMfXZbk8lXMTsQTIlRRyjXwYMpRmbztOjpGL00eDOVMb5PapROS9R+HLq22cRRbh50ntEdGv6p9R1chDZ5iJ6HbyJdt16TWSdj7wa1KP4nStp5W/TaKt1c5o0qyHdOB9OROF0Zvd5ikxKjw9HqjlqMY2o5URXAxqSd61W1DPgCD2+vIP+ug+F8TIdPHWB9h1CG19R8M7DFOGqnacdQWdo57FHGMhT0M5NtP4vbbjo1Dk5tpBegRpyLEqy4eaBwOtwunb5Hi

Question 3

W5V6By7vZvZ4ZT5S6eIkJvUoRjafIsnLJ84rNHFJvHmWJDb9LzfJ7k5eHwpr7EZxR2+xnlLVmcXGyT6dXjULod70aexZ3p9cMb9MC6OJUunIsSoqKJ5XMl22ehdOWBNRUtV5JcUo7uVVylzgcvlPySHl69RpGOpahc8XzpJCZKjaeU7VPdXO7qiIAUhjoCJYtJBCQC2RsBOUzO3v0rWycRkAjoiIAUhjoCJYtJBCQC2RuB/wOFOdCl3SxFnAAAAABJRU5ErkJggg== />

Question 4

Draw structural formulas for the cis and trans isomers of 1,2-dimethylcyclopropane.

Question 5

Draw structural formulas for the cis and trans isomers of hydrindane. Show each ring in its most stable
  conformation. Which of these isomers is the more stable?



Question 6

7ggY2BGCWvL0009nAwcOzA+x2JZQZz35zne+kzFkWlPuuuuu3HirtRAUfW7xPYvHtZV0+ZCEpYCrvbmvmBbTIhdMNz5Z4o5pQZLzZAhbl8Gyw8ccc0y+xLGEGlMDm5KWClDcAAATYUlEQVSU155wSULidjfVsppwLVqTw721hshqlyDlzXVc/763dPpUU+tlERfvH7BwiylfvkuetDy3hEpJmkkSAgmB2giYQllvNoP9xSwmUxktEFhPHFOs2VDv2Eb369/WX6gVbqfPLU3flrOjuvQsCdnFBWEoHdQMdKT87YmNPpyedJz1DWT+ytiXr2AAsma9WSfyAjqzmJds6lM9kYNhQZzuJp6dRZqSJAQSAk1HwCwIOUbWdNGXykUugpyjJ554It8lb6jSqrPl5zFSTH1sTVFeI9d2TK38ppbWqUt7GBACXgR/XhVaCCVqW/EK2WJ7+qyMALJl6pDOYUqQBZ06O1lwJ+pdzbtUeqeOKZKWSren7wmBhEDPRWDFFVfMCbd1TUxVtEIjYTRJpLZOhjFk8cUXz7cPHDgwTzCsh5gXibW2/nRty0XXEvW2PkPxVtxaxzZ3X5cmDM296XRe90DA7IVG3sHg3RKOTZIQSAgkBEoR8Ap6a2Fcf/31+cyixRZbLH9NvfCDdVXMPChkr732yreZHVFNvD8G+dhvv/2qHdKs7WZ+CUtYcrqaXHLJJfmbK9v0raZtlRyRyk0ItDUCMoPNkLjvvvuqXspaB9ZA+Mc//lH1mLQjIZAQSAhYc8Zsu1pvmfVWWmuyvPTSS9MA9tZbb+UJktaDaQs555xzssUWW6zijDCJzxKe2/oNw106h6Ea00rbewYCwgzeJOndCUIp5keXigRAL6myQiPLIUlCICGQEKiGgDdS+qsl1nmxyqI1F+RPCWdIRHzwwQfzBHIJ45aFbwuxBovVW60BIVziTb3WXZB87SV2vK2NvPOmJXXr0q+3bsmNp3O7DwIykr1NTuxORrNZBBYzsXSqNeLrLencfZBId5IQSAi0BwKWhBbG8G4X+XIWDjQ7oilvnm1uPS0k5f0+FpHyum0v5aP3ShP/m1t2vfMSYaiHUNrfJRCYNGlS/r4HiUGSHCUJiU8WM2a6xE2kSiYEyhGY/GE8fN0dMeFbO8WGA/qU7y35PSVGvzA8bn1iZEz+79YZ5lsz1pnzxXjgpU+jeKtInwEbxnYbLRJfviKt5PTSr1NGx/PDb40nR06O3rMvG9/davXoX9EXPS5e+eO5cdPE78QBOywXs/03I27K6Odj+K1PxsjJvWP2Zb8bW63ePyqeXnrN9L1rINAWsZZUZkIgIZAQSAi0HIFJb5yVrRKRff0Xz2bTrutZVv6kD7I79l7gy/fqLH9y9syYL7JswjvZn3aYK9/We9Uzsr+P/aLspMo/v/hwWLb17JHF/PtmD42pfEw25oFsr/6Rxde2y+74ymtWvsg+HLZ1NntENv++D2XVTq9SatrciRFIxK9r8LpUy4RAQqAHIjD94nvHrc+tE5OWWD761rv/6eeKpZb1ptb3os/8g2LhWZn8c8dSA+eKiJEx26KDYsGZG5sY13umftGv3gVnXTNOvOHKWGfSurH+l0vf/LeGvWOmfv3q17fe/aT9nQ6BRBg63SNJFUoIJAR6HgJT4pMXro9zrn0h/vPhhFj58JNiiwnD4/Jbn403R80Xu/1ypZj3jT/GqWc+EdPP2yfGTlou9vn59rF4rShFJRCnjIpHzzgkTrzz/ei1wLfj4BO2j7j+pLh67NZx6i/WiQ8uGhJHXT4iZhm8Unxm7aGZI2LK6Hjy/CPjhGFvxWzr7x1r/+OsuOi1FeLwIYvHvRf8Od6b4z+x0lqHxfITn4jzhxwVl4+YJQav9FkUp0dMiTHPD43Tr3wzZpnl3Xj4iQmx1mGnxeEb9I2nzjs8TrrlnZhzve1j4IiL49rnIgbvd35ccMCyMfHxC+PY81+NOeYcE2OXPyRO2H35qWGPSreWtrU9Ao3RzbavR7pCQiAhkBDooQhMiVEPHBXrbXhWzLjNBvHZ7WfEcZeOiD4Dl40xV58WZz3YK+ac4YMYtvfucc7IDeKAvZaLd/4+IfrWMPcmPvP7+PEuu8Quu+wRR//pn//DtXe/WG3btWPsg/fFnY9+GvPNPyCW7t8nVtx2w+hz+49i4wMvi093uiyu+/mqMd3E/57We45Ybq3+8fK9d8e1510T/5l/jvh4xLPx/vyrxKzP3Rd33/lMfDThw7jlRxvHgZd9Gjtddl38fNXpojg9Jr8Vl+/5wzjtsf6x3ZFHxAbvXhk/2/W4eHTcnLH8mnPHiHvvimuuHxErHXl0rDHq0Rh67OnxyItXx84b7B/3Lrl3HPmjxeLOfbeIYx8f+7/7SN86BIEaTa5D6pMumhBICCQEehYCox+Io3Y+Pd7e4LbYc+V1YsKdj8URi60cfT++Lh54M2Kpo9aLBfv0jXkW6Bujrj4sfr3//XHG2TPGXONHxGWn/CGe/mRK9Jpx0dj2yANjwH+R6zP4kLhg6NbRLybE3094Km574dWpmE6/yHZx+JZHx8N/vCIuemyHWOWFwbH5LhPjiePvjNGxUKy79oCYud/ischsU0+J6NU7ekXEDMvsEgeftE0cf5IlER+LQ2wknz4RV9w5OmKhdWPtATNHv8UXiamnT79AbDzk+Dh63Erx+ZP3x3MjI2LU2zFyYoTl/RUxy5Lrx9oDl4yXRE9eHxUf/O3yuHdsxDxPXRqnffRqfDzprbj7L2/HhDWWqZ2w+d/qpI+2QSARhrbBtQ1KbcUs6JgSo58fHrc+OTIm9549lv3uVrF65TToGPfKH+PcmybGdw7YIZb7Xxp0g1nUbQBDKjIh0M0Q+OSxP8SN7/WNNX+wRvTrPWPESqvH/BHx8cPD4smJC8aumywRM8Yssf4pZ8X379olfrXLL2OzF86K5f/vp3HCry6JtydHzLTyL2Pvk6drDJnec8UGh+4UC/7xvBh69Kkxeb9TYvc+E+Ppj8ZFxHzRd4bqjufe01XZN+nT+PL0vjHt6b1jppk+j7+duG+8ceAJkadU/KdWVbP4YuzYmBQRc66xdxx7xNLxy9/VOj7tay8Eqjz99rp8F7/OF6PixSf/lcfq2v5Oesccg9aI/o/9IixRuteZH8Ty6y4di66yZsx+zxH5tr0v+CQGrz2gAQbeO+ZYbs2Y7bafxF57HByXvfrlGurT3sNn8cTpB8QRR+8fJz4y5n+7uSjXnC1u+8lescfBl0XV0/93RvqWEEgIVEFg8if/jjExw5cD9eR3444Lb4t/Tv4sXhz+aHw6+2qx1ud3xz3DT42zPtgizrt8t+j/9i1x80vjYo4NL463Jn35Lp1xT/08lp8xwnSIcpm6LZv6LWb9xo9jn0ERY57+MNbecOGYPmaJJVZdKE+OfP2D8RFfjI9xRuzIviyzOLf4LL/IzEvEl6e/Hl+ePi4f8MPxH98VB+98Wtw1/jtx6M7LRt9ijmd5GVN/94qZl1oj1OalG26LNyZETBn1TNz55Mj4Yuox6UtHIJAIQ3NRn/JJPHnGLrHX9e9Onffc3KIaPm9qFnT8Lwu6T5EFHU3Kgo7eM0W/+mnQseaJN8SVl/8xTv9qGnQ0lEXd8I2lAxMCPReBr33zgNh50TFx024bxMY/OC5GLLd2LDT95Bgz6vOIz/4ef35l4Vjw/dvjzKNOjzvenTEWXH372Gop2YilMiVGP3ttnHPNK/nGiU9dEmcPezHeeviKOHfYl+8++OThi+L84W99aeDMOCh2PWidGLDp/vGd+XkmZolVDj8r9h00NoYdsGPsMeTieGVixHRTXo67Hnw5nrrjgXgnIiY8e21c+5iBe0p8/Owd8cgHXCHPxf1vLBaHnbVvDBo7LA7YcY8YcvErMTGmiykv3xUPj5ojFl8wIt78Xey0wynx9HR9Iia+GDf/+dn42/D7492IGDPigfjbM/fGX11k/Evx0Pg94tyfrBozPzUkVhm4cmyw320x4yJzRIM+lFJg0vdWRCAt3NQcMMf/PX6/0/fi0JvejgW3PD7O/9nK8d79T8Qr70wf623TP+656t+x7enHxDcnPRjnnnx5vDj7N2KVGV6P/2/v/uOiru8Ajr88+XFyAw78HQoKpxMTM9TVA3NqpdWyNqeOGa5W5piPpZLhsuWjqPlQVIaMuehhZtLcYz6a4jKaqDUePHSZIioaaMbhYR1w0wMCjh933H32gJORPIYIjqXy5g8eB3y/d9/P8/PHfbjv675XYohlZXg+f9r/GReqgvn5klAObtjKmeFLSF41jf52I7vWpZDrMRgvm4Nxv3iZ6Ksy6CaKfz+JsLh8vGZlULa/9RzleCISzuM/fx+mnd+jsKMK+tVH8T2ZRvyq7RTq7mZC7XukZfsQm3OMZwt+266CvouEtGhMG9eRWarnBxveYkWEndy0b1TU76WR7RPLofNvEqVOs2Pju1zQ6TAfzqUxagWJL0zk4paOKujxaCuPseWVNM7rA6ixRbD8taeIaD3t0Z15kX1E4FYVsFspNn6Nf2go/VuvquS0Ya3uS0CAFkeFBbunizJzE0NHDce328+cLuq+PMMXmlGEFG0kxbWMhBkBbWrOWsxFFrxCgvCoc+EX6NOlJ2lnrZkiixchQR7UufwI9HEfqKvBQrGpkYGGYHztZRSVaggOHYy2k39ZG63FGK06Qg2db9s2CLnVYwI38TUibuJDs6nclSMUPrPV7n8ppZwX1ZbJKAbNVD95NFIF+E5Vf/x0l1o00ldFJuQq84fzlJ5+6qGd5UrVHFJLglDeUb9Wa9YmqbhxKIYtU0dqnarszzOUT+AClWUtVTtjfqzSze0vsuJQxpS7Wi7CwsBpan5MjIqJWaBmR2hbfuc/f5+qVEo5itPUfZ4owl5SJ+odyvh2rNpwsl45yzPUXD1KMylZnbOZ1LYH+ykYqmIP1aj6U6uVofn1x6A56tXVj6ngAVPUxgKr+uS5IAWBauFHFao8Y67So1GTks8pm2mberBf64VdHMqYOlH18Zyi3jDa1BfJ4xUMUYtzapTt+ItqJChNRLzKzP9ALRqKInCh+sh6UaU/olOMWaMKagrUmnBPNSLuiKq9iWddDk0EbnkBR5HaNAHFnXEq4YVUlW+75UckA/g/CnSyvuuxdcqtfcd2Ewc/NOE5aR73Nle9NiNHTICfgWfTc6mo+CtDkhbzdu1cEpdNoMFYzNee9/DE1IE0WfL41Axan0HMfiqc0q/Ad9L9jNJp0A68A23FX1ixwciM5D/ww8ENFL6zmuVLl7J0WTy/y2krhdwV9A527HiHdXODr/J0V9B6MDZX0IVkN1fQY7VU56bjDpmnMNwnkNBvZtBXVdB7Kbl0mPix3vTR/CeDJje9o4ragztmxZPw0jNMqD9OtjuDpsRqb1dBj3YHT3UV1FqPsL05g67OY1viWxytdGA68A9Kmt+8LV8iIAI9I+ARQnRSCi8+3J8xi55hfPszGz3zqHKvt4mALBi6MZHO0hz2nIWIufcxSAN1n/+d7EswZuESvt9fg/OrDNbvrmTYgliidMW8n36KPpHRTBsMlkMZnEHPzOeeJPj0uxyo+g7TfxZF84uC+hlrSZ03gML1C1nzuS/+NUdIfm09qZs3s3lrNg2Bftd3tK0VNKUtFfTRu2dhaD5tWH2Z5g7aU+tJRxPfYQWNg+qWDPpKnNXuSDT9+lF/NInYdZ8xwNC8irr2l8tRi82dQbP4lU3sLVOogt8wtvXl2GvvLn8VARHoloAHQx9YTmLSaqLDdd26B9mp9wp09LzRe0U6HbmLy0czyFcGZoYVsveMlQtZmZgYz9PR3215h0L9xROUqL6ERY2kJiuR5DwXox8aRUluIcd259E04HF+OV3L6V3ZVOmmMtvrKIVl/2R9ajmPv7GdJweV8P7fzlKnf4CtJkfLp6GpujxejvC+gQoadGGTW8pja1E5DThpcGfQLSGz+1tzFN1WUl9N4XONirqS/ctiSNzfwCNxMdzZeQaNxi+ce90ZNJnuDJqTWcexSgZ9Nbv8JAIiIAI3iYAsGLo8ES5sl2toopxDH9uJDLOyf/dZGLeAx64EitoRU5no5yRn+RxWnQpmhBeU5hyg0tdMxic2/KdHE+nvoMpSC/YvOWYJJcRRwAcpq9i4z4x30D1E/2h0y1VZ2w7vRito0E1cSWpsOLaMX7Hg6Xi2ujNozmVl8XFm+woaXJWn2OfOoMnPNjJyRQcV9eEK9O4Mmk1P/JS1J/rihZ2CPbvJ3PPfK+iDp4YR/+bzTPbJI37iGCLvX0Kmdwj6bsdcbVJySwREQARE4H8vIO+S6I6pq45Ll50EDPLt8GNbm6pMGKv7YwjW0VB6gSr/kQTp2q3PGisor9MxJMAbGiuw2D1xlZlpGjqK4d3OoDupoHFSay7C4hVCkEcdLr9AroTM1yfRUUXtasBSbKJxoIFgXztlRaVogkMZ3HkGTbHRii7U0Pm213eEspUIiIAIiEAPCMiCoQdQv9W7bDKSMtnA8444Eh4OZc7rSyVs+lYnRB5cBERABG4PAbk09O0xj22juFJBl++rkQq6TUVuiYAIiIAI3KCAvMJwg4CyuwiIgAiIgAj0BoF2J9V7w5BljCIgAiIgAiIgAl0VkAVDV8VkexEQAREQARHohQKyYOiFky5DFgEREAEREIGuCsiCoatisr0IiIAIiIAI9EIBWTD0wkmXIYuACIiACIhAVwVkwdBVMdleBERABERABHqhwL8BgykaqGD85D8AAAAASUVORK5CYII= />

Shown above are the trans and cis isomers of hydrindane. Note that the cis-hydrindane displays some distortion
from the ideal cyclohexane ring structure. The result is that the trans-hydrindane is the more stable.

"

Question 7

Trans-1,4-di-tert-butylcyclohexane exists in a normal chair conformation. Cis-1,4-di-tert-butylcyclohexane,
  however, adopts a twist-boat conformation. Draw both isomers and explain why the cis isomer is more stable in the twistboat conformation.



Question 8

How many different staggered conformations are there for 2-methylpropane? How many different eclipsedconformatio ns are there?
   



Question 9

Torsional strain resulting from eclipsed C-H bonds is approximately 4.2 kJ (1.0 kcal)/mol, and that for
  eclipsed C-H and C-CH3 bonds is approximately 6.3 kJ (1.5 kcal)/mol. Given this information, sketch a graph of energy
  versus dihedral angle for propane.



Question 10

Write IUPAC names for these alkanes and cycloalkanes.
 
 

Question 11

Each of the following compounds is either an aldehyde or a ketone (Section 1.3C). Which structural
  formulas represent the same compound? Which represent constitutional isomers?


 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

dpost18

  • Sr. Member
  • ****
  • Posts: 345
Answer to Question 1




Answer to Question 2



Answer to Question 3

iVBORw0KGgoAAAANSUhEUgAAAUAAAABkCAYAAAD32uk+AAAgAElEQVR4Ae2dCZyN1RvHH2PfMrYs2bLvWyllKSRbiaKNKCUVLVoIpZSdUiGlRUmJFlkiQioJf3tkJ7IzBmOsM3P+n+/h3N657tx7Z9w7c809z+dz533nfc/7vuc873l/53me85znyaCUUmLJcsBywHIgDDkQEYZttk22HLAcsBzQHLAAaDuC5YDlQNhywAJg2L5623DLAcsBC4C2D1gOWA6ELQcyBbvlMTExsnv3bsmePbuULl06oI/btWuXxMbGSsmSJSVnzpwBvXcgbvbvv/8K7S9RooTkypUrELe097AcsBwIIAeCJgHy4T/88MOSN29eqVq1qpQpU0aKFSsmo0ePlgwZMkjhwoUTNePmm2/WxydMmJDouKd/fv/9d33PUqVKSZUqVfQzevbsKefPn5cHH3xQ32fAgAGuSzdt2iQRERH6d/r0adfxYO0sX75catasqYGP+kVGRkr37t3l7Nmz0rVrV12/3r17ux4PkJv6HT161HXc7lgOWA4ElwNBkQDj4+OlSZMmsmLFCsHLpnz58sKHvXfvXunXr59kyZJFoqOjE7XswIEDGgSQ6LzR6tWrpVmzZnLmzBkt9RUpUkS2bdsm7733npY0o6Ki9OXHjx933QZgzJYtmwB+wfb6+fvvv6Vx48Zy6tQpyZEjhwb9LVu2yAcffCDbt2+XzJkz63qZevJPXFyc5gn1TEhIcNXb7lgOWA4ElwNBkQBnz54t69evl6xZs8qiRYtk8+bNGvxoCpIh0o4BAtO8jBkz6uPm/6S2zzzzjAayatWqyaFDh2Tr1q3yzTff6PvNmTNHA4+na3lepkxBwftEj3vhhRe0Wg7oA+q0HX7w/N9+++0S4DcXc96dJ+ac3VoOWA4EhwNBAcApU6ZokKpRo4bccsstuuZIffv27ZPPPvvML6Dz1FykQ9RL7H2DBg3SEhbl2rVrJ0iCqJiAYlrRuXPnNOBj73zjjTckd+7cuiotWrTQJgCkVnhgyXLAciA0OBAUkWjVqlW6dbfffnuiVgJS+fPn18cAM+xkhlBjfUloqJKosgDdjTfeaC7V2/r168ukSZPkxIkT+v9Ro0bJwoUL9T6gyDXBpp07d+o2oMa614+BAPXYqP6ffPKJNhFQJ8wDgCNSsCXLAcuB1ONAUAAQWxZqrq+Zz7Vr1yZqqS/7HPdlAgUbI/Y1J5lnOW1ozvubSQbnNYHeN+3Gpudev6uuuko/Lqn60S4LgIF+I/Z+lgPeORAUFZiZXz70jRs3en36mjVrxPyYKQUEDE2fPl3bxDjGpAeTGkiPgAy2RWZOnYStDULVhlq2bOm69xdffKElR30iiH+oH2owtjz3+iH9QdQdQiI0bf/uu+9c9dYn7R/LAcuBVOFAUCTAtm3bCrO1s2bN0jOcRrV9/vnnZcOGDXomFjseNkJDBQoUkJMnT+p/UQfbtGmj9wGMefPmSd++fWXs2LHa/oca+f3330vlypV1GSZWli5dqkGuYMGCcvjwYalQoYLr/kh/1AFwCiah4vN87HyA2vXXX68fx+wzk0GAM2WoX9myZV31Q3oFNAF3S5YDlgOpx4GgSID33Xef/qCPHTumJTFscRMnThTscoCZL0Lqe//992Xu3Lny6aef6uLcC3r00Uf1duDAgfLOO+/Izz//LLfddptL8jI2Rl0oDf5069ZNq/9vv/22jBgxQubPn68lWNxiADkA0JLlgOVAiHCAcFjBoEmTJqmMGTMSaivRr0GDBq7/nc8tUaKEPj569GjX4VGjRrnKrlmzRh8/d+6cql+/vsqQIYPrHM/IkiWL+vnnn9Wtt96qj/fs2dN1n3Xr1rnKxsbGuo4HYycuLk7ddtttl9Qvc+bMaubMmerOO+/UdXnsscdcj9+2bZurfocPH3YdtztJc2Dy5Mn6Xb/xxhuuQgkJCaply5aqWbNmCp4a+u2331TDhg1Vjhw51FVXXaU6d+6sduzYoU6dOqVatGihy+/Zs8cUVxMmTND3HjZsmOtYUjtnzpxRb7/9tqL/ZsuWTV199dWKvnf69OmkLrHHQ4gDqKNBIzpZjx49NGDR0ehYW7duVe+++6766KOPEj3366+/1sfXrl2rj7/yyisaFLJmzarWr1+fqCwdfcaMGapVq1a6Y/fq1Uvt27dPl/nxxx/1ff744w/XNUeOHNHHeO758+ddx4O1Q/1mzZqlP0Y+PD6If//9Vz9u7ty5ui6LFi1yPf7YsWOu+tkPx8UWrzt9+/bV/ePGG290lYuPj9fHIiIi1PLly/VxgDJTpkyuAcYMyADhqlWrXMf//vtv133os5RjIPNGDHaeBmOu7dixo7dL7bkQ4UBQAZA21qlTRzECJ4eQgkxHXbJkiUKCc47oyblXWpXlgypdunRaPT7dP9cAYL169VxtNQCYJ08eDYAnT57UUh8A2L59e3X8+HE9AJcpU0b3r+uuu04hmefOnVt5AkAkSW80fvx4xQDN76uvvlIAIgOw6bsMhJZCmwNBmQS5XO0en0BDrBGGrrnmGtmzZ485bLeWAz45gH0YezKTYKwxZ+INdySWJTLJtm7dOp/38FYAp378S++991554IEHdNFGjRrJ5MmTvV1mz4UQB0ISAAE7Zn2dREQVS5YD7hxg9p/15ZC7HymTbzjc16pVS4OfuRaneYALp3o8Dph9f+2116RcuXK6yNSpU01Rr1s8HVj1c+edd7rK8f/999/v+t/uhDYHQhIAixcvrpe6hTbrbO1CgQM4xQ8ePNhjVcyqIFysnATwMSOPryqgCQiynjy5hFsVDu/u90/ufWz5tONASAJg2rHDPvlK4wAS1/Dhw3W1AbRnn33W1QSz+ubIkSOuY+wYqQ8gREVmi3tVxYoVdTlcmFjWaAggHTZsmPZtJbzZq6++qlVpQJRVP+73N9fZbehzwAJg6L8jW0MvHKhdu7b06NFDl3AHQMKSseYa53tUYRM0d/HixXpFDmowAAiQEa+xUqVK+j6sKhozZozrqQSzWLJkif6fiEOsdV+wYIFcd9118scff8iPP/4oHTt21Odxep85c6beb9++faLVTa4b2p2Q4UBQHKFDpnW2ImHNgaZNm+r2A4yPPPKIXk7JBNsTTzyhw6ZVr17dL/4AdExymBiT2B2hzp07ayCdNm2aYDdEnSZYLwsB+FkKfQ5YAAz9d2Rr6IUDqKDuxNJICInv448/1vvY+FhvzkQHgWkJVfbRRx/pCRBT3v0+2Bchgu2iFpvoRYAp1KVLF73cEVsggMdsM+vWoQ4dOljpT3MitP+EpArMrNxXX30l3377rR5VW7duLZ06dXIFNOAcnZYlcITahwiV9csvv+jw+LglWErfHCAg7q233qqjb5uWos4SBAPgypcvnz6M5IZXwSuvvCIrV67Ua8JZq86sL2kZUG+REI29kIuQ+Li3kSCRGs0M8VNPPaUBkXJE70EVZo06yzIJu8Z9UIeJV2npCuBAsN0Uk+sIffDgQb2syDiTmm3hwoVdqylYcsRxVo8Y+uyzz/SxyMhIcyhNt9YROk3ZH9CH16pVS/ctVpX4QyzHmz59uj9FbZk05kDIqcAYjsmmhrqCo+mXX36pI6wcPHhQkAQhVBtm7tyJaCvMClqyHAgkB/D3g5AmkTL5eYsshC2Q1A0EwLAU2hwIKRUYFWLZsmXatwqbDSouhJrLjB7xBZ3uCaHNWlu79MIBbH/Gp5A2MdACgknRW2+9JUywEA0IVdtS6HIgpACQ0FHYVbDhsKTIEOHlOY7B2xlOiyRDJr0ms2+WLAeCwQEjAfp7b9xpkACHDh2qZ4pJ32opNDkQUiowqSJRLQgq6h4evmjRovqccTrFh4uYgRir+eHvZQOKhmYnC8daIfnlyZNHXnzxxXBs/hXT5pACQKI2o1oAbu7EMdwMcFqF2BL81AAgNkMTedr9Wvu/5UBqc4DZYCRAIoMzU2wpNDkQUgBYtWpV7VhK9Gcj6cE2vPhJqs66S8pAgCHuB7i+8MMNwZtdJjTZb2uVnjmA6xbmG9Rhq52E5psOKQAk9BUzaPz69+/v4tibb76pwQ0bYJMmTVzH7Y7lQChzgEF69OjRevKOwdpS6HEgpAAQu9/IkSM1AI4bN04IgYUBmYXoOKuSbJwkSUyS8L87AZzGe9/9nP3fcsBwgH6yYsUKad68uV65gcO9WeZmygRqW6dOHb1iBJsgXg6WQowDwfRDJEIu0XaJxrtixQpFxF5/6P3331f58uVzRdYlfPlbb73lurRYsWL63Pfff+86hpMqztHlypVzHUuLHaIAb9iwQd17772KyMSWQocDpCUYOnSoqly5su4r9KucOXPqXB5EjSafzIgRI/T7C2Q0Z5z76QtdunQJCWb8888/6pNPPlHk55kyZUpI1CmtKoG0FTT68MMPdUcrXry43rKa45FHHlHffPONIg+GNyJ3x5dffqmGDBmizp49661omp+jfiRkeuaZZ3QYfLN6hY/LUtpygLD4X3zxhStRVf78+XWemv/9738aBHhXw4cP1zlcnnrqKVWyZEndV0uVKqX4n9wugUik9c477+j7Llu2LNUZsn//fh2yn0RcpGmgzSRvKlKkiCpbtmyq5MlJ9Ub7+cCgASAAV7BgQfXAAw/oqpDTg4xvzZs31zkUGHEbNWrkdcT9+OOPQza5DImWJk6cqCU9JAmy1NWtW1cNGDDA1cnIPRHuhCR16NAh/XNqAAATx0+cOJGIRQwms2fP1sscTSbARAX8+IfnLFy4UD388MMqV65cOu9H27Zt1bRp0xINpgyyRYsW1RkFTT2MBA8oIhHST1l6SVKvMWPG6GxyflThkiJkM6xSpYq64YYb/NaELrmJnweOHj2q2/r000/rZwJ4SKB33XWXTr71119/KdoJGHNu7Nixft45/RULGgC++OKLKnv27Gr37t2XcI0RlZHV04i7adMmV/lQAkA6DOt7SZVIJjAyj/Fx3X333TrbHWoOBADSqfiRICfciYHC8IOMgIaeeOIJfbxNmzbmkAY9PlRTni2Ji/bu3esq422HvkOyJJNiFbDh46YOSdGCBQv085o0aeKxCAM5GguaS6FChXTZihUrqhdeeEFxbXK0E/OsTz/91OOzUnowJiZGzZkzR7300kuaXwzGpAAlqRP9FWkXc5QneuihhxRSMaAZjhQUAKSjk22rf//+PnlqRlxsL0iE/fr1c12T1gBI554/f7569tlnXVIdKhJpE0lvSU5YJ2H7Q2Lgw73++uudp8J2H/AhaxqDhRMAu3btqvl0xx13aN6QOZByDCzYce+//34tefExo6a589owNCoqSoMc6THhO+YWQHDjxo2miM8tQMm1mDG8EZIltmxyESPtUzds3AyC9FV/gLpdu3Za/fRlAvJWD1Kn/vLLL+rVV19VZMWjz/G9kYL19ddfV7///rvfwIxdFLB05tH29uz0di4oAIiofc011yjUnOSSs6MbAPzpp5/U888/r8EoOSNucp9NeaPaMnFjVNubbrpJDR48WKfnBLA9ER/HzTffrD8kPianJOupfLgc8xcA+XjhGx+04fHmzZs1CKJJoL4aog/88MMPGnj48LG1kuwcCcupZpvyvra7du3SYMbEG6qqv4QKj30RM0/evHl1/YkcwyBOXmpPUhcTELQnOYCDqv7nn3+qQYMGKSRVVHIGCoD75ZdfVvPmzbssOyVaCyAajn024ACIxERHpmNcLhkARPUEhBhxkSSw55BY3Z8R11cdjATqS7X1dR9ULdrNj1He0gUO+AOAp06d0tIfkohzZp87AIjwFIkQYiAsUKCA7gskLscOiwp4ucSAx3OefPLJFN0KkFq8eLGWPmvWrKnvBaA++OCDatKkSYpc14YM4KAxeCJAfPXq1drzoVWrVlrKpG7Vq1dXzz33nJoxY4bPSURP903qGCYpJGcjjSdVLj0eDygAMuJVq1YtYIZeA4CG8XQiOhOdyrjJ0NlQeZIacc21zm1yVVvntZ72sXOiCtFJkUiio6M9FQvLYwYAM2bMqPkDyPGDV/z46JggY2BDkkNCclKfPn10uRo1aujD3bp1054BqG6BJLQVpCAG2UBIQnv27NGDNIM1beO+DOJvvvmm7quYUpDmGID58UwG0XvuuUfb5OBN+fLlFbbSqVOn6gmjQLbX/V4kdueZmHbCiQIKgMbtZcmSJQHhoTsAOm8K2AJ6qBsmYCWgiDriPuJynTfV1syKOe/v7z6d984773R90L169fL30rAoZwDQAJ77FgDENghIAIzuwIYdmWsYWINNqKU8Cxsk7zVQhFkHzQjptUKFCvoZRmVGjWUmmucihTFzjVTrzodA1SWp+9BeAJqZaqTZcKGAAaBxe0E6CxR5A0D3Z6AOUx6DNNIYIy6GambCsM2ZWVtGWKJHm1lb9/sk939GZ/NR81xPdp/k3jM9lTcACMBh00O944dPGnwDAI8fP65dUSiDPctJt99+uy6HKhhsAqiwz1GvUaNGBe1xSLzvvfeedhNDskVw4FggQTcllQ9Ht5iAAaA3t5eUvAyuSQ4AOp+BiosfGK4KOF8//vjjHmdtndekZJ8ZSBxKDQCOHz8+JbdJ19c4AdDbLDCmDAat++67z8UPrkUqxOiPVJQahOM97zNLliwKB+Jwo3BziwkIACbH7SU5HSqlAJicZ1xOWZY2GfBj1tvSpRzwFwBZygjoYCtEikcCQyUEFDFtXI7byKW1SvoIUqDxRWzcuHHSBdPpGWyXDDpMtoQDBQQAcWZNqduLNyaHMgCa2W4DgKFuPGamD/+x1CYA0PDIKQEymcHx1q1bu6rEZBamClOeLeC3atUqV5nU2EE9NXVwn5VOjeen9TPwcwwXt5gMMPty4jMsXLhQh6j64osvdDrAy7mX+7VEeV60aJFw71Aikt2Q84H8shAxCv/6669QquIldSHGYoUKFfQ76tq1q1SsWPGSMsE4QAgzk66gbt26rqRVW7dulT179uiUBoSQN7R7926ZPHmyUN8qVaoIKU7JwZGaRPDdYsWK6ZiURHWmTs60malZl7R4Fv2b/lGjRg2ZOXNmWlQh9Z55OaNNoN1e3OsSqhIgM71GQmC7du1a96qH5P8sKzP1xvGYYBNpIRWGJHPcKuX062RmNtwoXNxiLksFDrTbi3snC0UARB0zPm2ACQvmrxRiUsgAoNmiYuL+kZylY1dKey+nntgCmUAzfMLJOZwoXNxiUqwCE0CyXLly0rRpU527Nxgya6ipwKhzhDhftWqVbi4h+Hfs2KGDtvpqPwFc0zql59KlSxNF2nav8y233CKPP/64bqNNLyA66Vb37t01mwjOu2XLFh2Q151v6fX/5cuX675ANOunnnoqTZo5ceJEGTBggP7OCJj84IMPChHiS5YsqU0obdu21dHiSYtBvnCIwMlTpkyRJ554Qp5++mnv9U7pqBYMtxdnXXBlCTUJkIANRiJgy/Ipf4lwS0wUpeWPkE5XKo0cOVJHOiGuniFWBhHUkx8uSYbwzaxUqZKeQWZG89FHH02RYzFSoHFS5n0TfCDUiMmtlKx/9rcdaekWwzpno22ZLe8BrYXZalbP4CXAMefqq5YtW+pjBNzwRSlSgYPl9kInxpcO9wNi6WGH6dixo682pMp5HFWNkywM54WEo59YqjDbw0NYXw3fO3To4DrLEkSO8TPrwpnBdH4s5jwhn0wZ1w382HHaApmhXr9+vR9XBa+IeyQYQrMR/otQWCtXrgy4M3VaucVs2bJF+3/iGkWEG+Yb+AYxSwB6LDEEAFl8QBknAOI0z3sPGgAG0u0FyYjACVSaqXfTYdkS4oiILISjIrZeSqLLBKIrYg9h3aazbv4umudaVjr4+gVzFA8ED9L6HiZYgXNABACR8BiYALedO3e6PhomqojswkdiPhqiFCWXkAKR2s27ZyIpNVf7eIoEY+pSp04dV73MMdYPs3yQACKBorRwiyE4CXhADEYn4RCPYzzvncEo1QHQBHW8nGgvRP/49ttvddQUGmNenvsWZHce43+ACOYQLTi1lg5NmDDhknrg3+Yvbd++XUfibdq0qQ6W4GyT2Sc3Ax9bWv9Si6f+8s6U8wcAcZ4mGAXSnrMd9FVAkl9ywl2ZZzulQN4Xkc2DRQyE9G1y4DgjwZh+4twa9c95zLlP9BhWtuzYseOyqpsW0WKI9ENbnCuDaAShy3iPAB9RcdhSjhw8mDr4GUEq4BLg5bi9YNNDimMEZ82n80V522dhelLnGR2wURD8IFBre917yoEDB1yx3kw9nEFb3cv7+h9JkAjDnTp10mGdzD2JhGL203KbmtKNL145zxsApO8Q6p0fx1B3jQSIjRPeoR45icAC5qNJSZh9dymQe/EhBoIAaqRUEoGh5gPevt4/qrhzCaav8pxHm2KASIkZgHaapGOp5fBvwqDxnp2Exsggx2odviMDgJ54EHAATK7bCx8TEiMVwXDpqZLux3i5vKzevXvrMN8AEJ75RKrwJi1yH6LCYDhlHTCAGwgiDp2zjgBVoJZlwR8i2lBnAjcgGVvyzAEDgM53YfYNAJqgqoSQchISDFIBH01KIxW5S4GArVPKdD7P1z4hvwiLjzDgnGQx7fG0BRgBSBMaa926dTpHCZKP013H07XOY0iNuG598MEHiWIU+qozbeUbJKNeakSLMYOZM2UCdWT+gW+QgZDcMQYAkcqR9PmZ1AUBBUB/o73AKDoZGdL8eTEAHiGBDOCB8N4IPzzEXJMa0/lynfswiUgjgCdRSFLSWWfOnJkI/Lg/KkWwKCV1DFZdQu2+BgBZH0xKR34Yx50SIO+bd+RcXkc7TBRmPhaAA5sWHxAfGbPK+ED64r27FMhzkIr8IQZxHIudWdmcfdXTPjYuAB3JkIkIb0TdmTTAawLNgox2nu7pfoxBAR58/vnn2kbt7RmcW758ub4vg0EgCbWfSDS8T4QfTF34rCLpETbMCbg8m/PMDfDeeKf8H/RJEG9uL7wAItgCYiatoDuzzf+MQET+8BfwvDEaiYmRjJkwpADzDE9bOgVRYb777rtEzErq/gCxO8gixabVRExS9QyX4wYAvU2CmI8jMjIy0UQF0cPJN8KgiNTNx4L6BCABqPQXZlKRGOgfSUn47lIgUpknW7CnrGye+qTzGGBUtWpVRQBYwMwXIPt676jomIbo897MSKYO8AfTARImEnNSBMDS7stNooQLEyuReJ9E+KYexCIEZ9AasVvyTQOCrMTB4wLNDimeQY9jqTYLnJTbCxUAtcmSZRjpvgXwcGlhJpfMVb4kvKQY7+s4HYYlaSyyN1nB3Oti/oeBxAgkNDm5FjzZvUh8ZMqb7bvvvuurGvZ8kDjgDwAiKZmPBi0BcEIbYeBC0zBh9Z1VpN8wY4p9jJStmFnoH9igkBSRTEz/8CQF8iF6yspm+kxSW74LBlhs2CSEulzAc7bJ0z5SKKBPvybJVFL14jgDBXE90YDcTUkpdYtxl/JoP1I4M/MIMZ5sqgw4vAv3uiLMMEiBP+acUwIMuB+g0+0FdWLo0KFaijMPd99ioKXDTp8+PWiA5+klO48BtKhJqBG+pEPEbOqLpIBrBXY5XpCzXSSRtutmnRxO3X1//QCxBXn6aLC1eZLW3FuBVoGhn+jNSCT0AQCU2UjsdiQmcvYL3E48Pc9ZxuwjvTC7SUBed2DxVA9s7qjswSAkOACOgcJIwaaezi3SNGXImGcGAn/dYnxJeb54QLsXLVqks0UiJSLY8GwjoQPqSJD8nPbzcePG6feFhOmLfDpCG7cXHoIR1Mkcsw/AYMTHnmIq5+vBqXme0RXboTMPsam7py0rC9yP0xktpR0H4D+pB7BzGcJxngjf/JwSAKHKMIvw8WKHZpLJH/Az93VumUFmIGWywYSxBzAAPmxPpD917yvmf9RaQvmzgsTf2VdUPcrzwXfv3t1ZlaDuI8Wi/uJ6k9SEJZMLSJBgAtIrNlcnpUTKc16fFvteARDjY8GCBT2+YJxDGRlSO1ZbIJjEh0OnZjYsqZlljLGmI1977bUp8h8LRF3tPUKHA0hAS5cu1aYTIwwAcs6ZXDQFhAUkFwDBX8J8gzoNqNLvateunaYaB9Ib0hb2etpovgWzNc7hgKY3W54/Up6/PApGOa8AOHDgQFfDEfMBhTFjxgTN5y4YDfR1T9Op8Tdytx0a42xqhWP3VVd7PrQ4gBqJXyGmkV9//TXZUiYAiW+s+yojZjhZ9hUqhPM4KjBmACMFM2lCPQFEX7a8UGmHp3p4jQYze/ZsHU3h66+/lsqVK7uiLXgPr3Blnz1w4IDMmjVLaDMBO3PlyiXLli0TIlFYshwIJAcIokvEkiVLliS67TfffCPt2rVLdCxU/iF+8qZNmyRz5syyf/9+OXr0qLRo0SLVg9YGih9eAZAPv1u3brJmzZpAPe+Kus/58+d1VOAiRYpcUfW2lb0yOECkacJtZcqUSX744Qdd6R49esjo0aOvjAakg1pGpIM2BK0JjHIW/ILG3rC+MWkC6tSpo7WLzp07a17Url1bRo4cGdZ8Se3GWwBMbY7b54U9Bz788ENp3LixzjuyYsUKadOmjTRs2FCmTp0aVgFXQ6EjWAAMhbdg6xAWHDh37pw8+eST2u7Xvn17nSyKSNMQyYfKlCkTFnwIpUZmCqXK2LpYDqRXDhw6dEhPbCxevFiGDRsmL730kg7lbtobTlnnTJtDYWsBMBTegq1DuubA6tWr5a677pITJ05oD4OWLVum6/ZeSY2zKvCV9LZsXa84DuBOVa9ePcmRI4ee8LDgF1qv0AJgaL0PW5t0woH4+Hjp06ePPPDAA9KoUSMNfiSmtxRaHLAAGFrvw9YmHXCAlLGtW7eWoUOHahCcMWOG5MmTJx20LP01wdoA0987tS1KQw5s3rxZ2/twcp48ebLcf//9aVgb+2hfHLASoC8O2fOWA35yYM6cOTqR+KlTp4TZXgt+fjIuDdizQx8AAAtBSURBVItZAExD5ttHpw8OsD52+PDh0qpVK6levbrg3MyqDkuhzwELgKH/jmwNQ5gDSHsdOnSQ3r1763Xz8+fPl6uvvjqEa2yr5uSAtQE6uWH3LQeSwYGEhARp0KCBrFu3TsaNG6dXeCTjcls0BDhgJcAQeAm2ClcmB1B9a9asKQsWLLDgd2W+QrES4BX64my1054DxIj85JNP0r4itgYp5oBXCTA2NlYbc0+fPp3iB9gLLQcsBywHQpUDHgEQkb5ixYrSpEkTmTBhguTNm1cbefFuh4hkkSFDBhkyZIirXUS3jYiI0D8CiVqyHLAcsBwIdQ5cAoBLly6VO+64Q3DoJEJF6dKl5ezZszpQY5cuXXR79u3bp7cxMTGu9gF62bNnJ8eI/rlO2B3LAcsBy4EQ5cAlAEiI7jNnzmiHzoMHD8r27dvl888/1zkAyFUAMCLpeSJCeyd1zlN5e8xywHLAciAtOZBoEiQ6OlrWr1+vEwENHjxYsmXLpuvWqVMn6dWrl0RFRcm0adPSsr722emMA/HRa2XmjJVyFOtK5iJyyz0tpEyO/xoZH7VCps9aJ8c4n6WoNG7fXEpl/e98Wu4lRK+TmTNXSFR8Dinb7G5pWDTLheokRMu6mTNlRVSCXFWlpbS58eoUzDYmSPS6mTJzRZQk5Cwvze6pL0USfa1Jtzx20xR579tz0urZDlI9t2dhJemrw+yMM1Xc4sWLFdnrSYF58uRJ5yl111136RR4bEk6bfKD1qhRQ/EjaTI5diMiInxmvU90Y/tPmHMgTh35pae6VkSJZFfNJu1VcS6OnFbrBl6nMulzNdXQtTHK/0y7rpukcOe82j1tkPpgXayX66PV/EcLK5Hcqu2P0Y5y8erQtLtVHhFVuOtvKsZxJlm70fPVo4VFSeR96qdj/l4ZoxY9erUSyaPaz3HWyd/rw6tcouHBTF4w2UH8MiflzJlT/0tYbyetXbtW+KEum+ud5+2+5YB3DmSUvOVqy0133CiRclrmjvxStpouFrNCpv1bR6oj+eS6VqqWyCWJOqz3G1/G2QQ5vmyI3NvpfVl5LMHLfbJJvqsTfycXCkdI9nz55IL+5OVyX6ey5ROPt/d6XS656Y2pMvGzb2VEo0ivJe1JSSyZ58uXTwA/JjN27dolpUqVcvFo27Zter9w4cJiJj9I5vL666/r46tWrdI5hK3LjItldicZHMhZu7t027pMhq0ZLeNWPiXv3pRdDi6cLuqOmyTy0w/+u1PCSflr4isy+NdsUjbHLjlYrocM6V5Fdn7cWwZ8/4/kbtRV6u14Tz7aWkPe+PodaV1EJHr5eOn/4Q7JX+C4nKz4tLzWuZq4NMOzO2VKv74yL0tVKXZ8k+wt/5KMum+HPNuuvyyNyShHR7wgIzIOkSdyzZIRE3dKzlwHZenKs1L3mYHyQtO8F+t1VnbPeE0eGParbM15m/QeO0ha/FfjC3vx0bJ8fH/5cEd+KXD8pFR8+jXpXC13IkCP3filDBjyiyQUOCWbDleXFwfdduFaFSvrP3hYBk5aLRlv7CFj3+sqVXIkSMy6SZfUqef1u2Tcq8Nl5p5IOVy9sjRcOiAJvtg815q5ToE3ISFBZ3vPkiWLGjVqlOtUVFSUIhN8jhw51LRp01wqcJ8+fVxlVq5cqa+1KrCLJXbHTw7E7/lCdR24VG38sIHKLKIi2/2gDp3Zpj59epRau/db1SSzKMnVVs2KjlMHvr9P5ZeC6pGFJ9TpNa+ospJdNRq3TR3X+6LkmrbqtVfuVCUK1FMjNpxRcbs/Vy1yiqo0aIOK+Xuwqpy5lHruz//MO9Gz71GR2Rqqj/6JU+e3f6qefP1PdVLFquUvlFQihVXX32KUOr9dvXddBpX55rFqe+xW9XZ1UVLoMfVrzGm1qk9pJZJZNfjoH3V65weqfmZRmW54W62c/5gq5FKB49Tuz1uonFJJDdoQo/4eXFllLvWcclRDxR+apToVElWi51IVvXGoqiKi6oz5UfUuLUoyVFG95/2tfnysiBLJpzrOP+GlTifVkh7XXCx37CKPLuWLn68m3RdLpFHg28eEB2sc+/btK2PHjpW5c+dqf0DU2yxZskjTpk3dxzb7v+VAADiQSYrf85K0jRQ5Nn2kTJ73rayq3VoqJ9Ijo2TRmO8lSgpIucJZJVvh8lJQTssv46bLrvgIycA8SuWO8sybM2TX4cXyYuWscvTPz2R+7AUpcOD7f0jU+X9k3sJdcvZijTPlzCtZz/wmXatdL52nFpGXX64rF4w9jiZlKiq3v/i69Hm0lsQuny+rokQkerdEGVVdskmBonkkW5F60rS0SNz/psqy45jJDR2VPz+bL7GCFDhQ3v8jSs7/M08W7jK1EDmyYJRMPihStGZJiSz3uHy9YJFMurfQBQkxV3lpWKeMlK2QX0ROydGTcSJe6pQhAk5cpAye+WJOh/s2EQDCjBEjRuj1jaiyZKlv3ry5rFmzRoMfqfuwBRqHaHfmkfQF8LRkOZASDmTI30Se71JS5PxieanXBmnSolRiG03CWTlxAif7CMlIz43ILBn51k8fk9MXfPQlQp8wT0+Q8ydjhSvy3/ykvDF6lhxQSjb0rSxmIjlXvWHywzsdpLpaI1/1aSF1us6Wo5d04QjJnv20LBvZTYZvLCwVwSFPlDGb5GIiWCVIghP/Es7LyVhdC7n5yTdk9KwDotQG6VvZ1CJeTkUd1fWM2X9MzmXMK1Ub3yLlXXq6p4f5WaeLlybmi6f7heexSwAQ15dly5bJd999JyRwIWEz0iA2wfr162su8f+7776rw34bthUvXlwf4zj+gJYsB/zlgEpIkPjzIFgOqdXtObk+QiRfvS7SqBDdUzE9LJIQJwkZCsoNLcmrEStHYuIk7uRhOalEitzaRK7NchFxlBN5IiRPpbpSTEQ2Tp0l28+KxB9dKXNWRMlFvJTDP70jq5t8Iqv3rZX3W0XK4ZXr5GCciBYnJV7izsfK7qVfS/cOQ2XumRby7IOVJeslAHnRJ+LsIdlxVEQqNJfaVzmksIg8UqmuroVMnbVdzkq8HF05R1ZEmVpklILX3yolRWTDhImyivUF8TGye1eMeHqU5mv0T/K0rzpR0PDDbP19KeFSLt0r+baBIc2BuCP/U58/f5PKX6qdGvT9ZnUybr+aem8j9drq0yr+xHr19StNVaR2g8mvWg74QW07uFQNvq2Eqtx1vJrUr4EqVbeX+nn/EbV0SAOVnXKF2qsxfx75z5Xm/D41q2cdlUtEZS9VSzVsN0AtPGQcbeLV/s8bq7K3dFdvT5yg+jevptqM36bOqji196s71FUiKnP5u1T/WbPVc+XB4cyqXItHVIeaoO01qtOXG9WyfrVU+QbNVMvuY9WXI9qqEsWbqaF/7lSL+lZXESIqY81+6teoOHV+3yzVs04u7epTqlZD1W7AQuWqBm8o7pBa0PsGXc/MxeuoFg+9rMZ/1U/VzcpzK6iXflqqxt4RCbqrkt1+UHuP/ame91Cnh8ZPVf2uy6REMqhqfX9UcwclwZeQ7hWpV7kMPCpcwN62M71w4Jwc3vK37IkvLJUqFJZsl+gxl7bzbNQO2R6VU0qXLZSofNzxAxKbPbfE7tguJ/KUlfJFclycmY2T47v/keNXlZISkZkk4cxB2fHPWSlYtoTkPrdftu2LkBKlC0qG48dE5cknmY7vkE37IqRYhVISmaQCdFaidmyXqJylpWyhbIlmgC/UOEFO7d8sW47mlGsrlJA8Sd7nYmmPdUrcvks5YY84OWAB0MkNu285YDkQVhzwY+wMK37YxloOWA6EEQcsAIbRy7ZNtRywHEjMAQuAiflh/7McsBwIIw78HzwmOx+EY5b9AAAAAElFTkSuQmCC />"

Answer to Question 4



Answer to Question 5





casperchen82

  • Member
  • Posts: 540
Reply 2 on: Aug 23, 2018
Great answer, keep it coming :)


sarah_brady415

  • Member
  • Posts: 328
Reply 3 on: Yesterday
Excellent

 

Did you know?

Astigmatism is the most common vision problem. It may accompany nearsightedness or farsightedness. It is usually caused by an irregularly shaped cornea, but sometimes it is the result of an irregularly shaped lens. Either type can be corrected by eyeglasses, contact lenses, or refractive surgery.

Did you know?

IgA antibodies protect body surfaces exposed to outside foreign substances. IgG antibodies are found in all body fluids. IgM antibodies are the first type of antibody made in response to an infection. IgE antibody levels are often high in people with allergies. IgD antibodies are found in tissues lining the abdomen and chest.

Did you know?

Historic treatments for rheumatoid arthritis have included gold salts, acupuncture, a diet consisting of apples or rhubarb, nutmeg, nettles, bee venom, bracelets made of copper, prayer, rest, tooth extractions, fasting, honey, vitamins, insulin, snow collected on Christmas, magnets, and electric convulsion therapy.

Did you know?

The liver is the only organ that has the ability to regenerate itself after certain types of damage. As much as 25% of the liver can be removed, and it will still regenerate back to its original shape and size. However, the liver cannot regenerate after severe damage caused by alcohol.

Did you know?

Hip fractures are the most serious consequences of osteoporosis. The incidence of hip fractures increases with each decade among patients in their 60s to patients in their 90s for both women and men of all populations. Men and women older than 80 years of age show the highest incidence of hip fractures.

For a complete list of videos, visit our video library