This topic contains a solution. Click here to go to the answer

Author Question: Draw alternative chair conformations for each substituted cyclohexane and state which chair is more ... (Read 85 times)

casperchen82

  • Hero Member
  • *****
  • Posts: 540
Draw alternative chair conformations for each substituted cyclohexane and state which chair is more stable.
 
 
 
 

Question 2

6k7I8AhBZGPmKYBUUAtkTkacnIkA8O3AiQoZ7Eg00akxnmQPDAQMIqMVkhBIoIYoGVIbCxw376/vvvMwgaaLZQGsyNxAyyaAPsido+OBn2M4S/FZyL4dwoSSKQExDYu3cv93uD3125cuVSOP7r036se0ZgDwTpUNP8+fPpq6++Uh8yi304hsO5GT67cIKGryPWCmPNNhy6ESvA3AmLPBBAxt3dnfsHa+NXCkNtqMhjEoEsRODVq1c86gocmZ88ecLvhJUiK1asyLCAzUJ2c0zV1jmmpbKhEgEzQODhw4d8RQdC3WG5HAirJaAVmnNEdDOALstZkMIwyyGWN5AIvEEAw0uE1cdadCwjwxJHLN1cu3YtYS2xJNMiIIWhafGXd88hCCxbtowHDHB1dSUE+ICtDcFysVYfW0mmR0AKQ9P3geQgGyOAgAKIztyjRw9q1aqVEqkdTcawGMckmQcCBo10bR5NklxIBMwDAczCIqIKoq6MHz+eR2fPcRnnzKMrdOJCCkOdYJKFJAL6IRAcHMxTrmK2eOPGjdSuXTv9KpCljY6AHCYbHXJ5w+yOwKZNmxRfNiQwk4LQMnpcCkPL6CfJpQUggAxuEyZM4C4zCPyLiZJKlSpZAOeSRSAgh8nyOZAIGAABRFnGJAlmh5FZburUqXqnqjQAG7KKTCAghWEmwJOXSgSAANJ2YigM/8ElS5ZwoSiRsTwEpDC0vD6THJsRAkji1LlzZ7K3t+e5STKTH8WMmpUjWZE2wxzZ7bLRmUUAwZNnzZrFE5d5eXnxxGBSEGYWVdNeL4WhafGXd7dABOLj48nf358GDRrEI7cggxzS2UqybASkMLTs/pPcmwCB48eP89SZM2fOpEWLFmUqNawJ2Je3TAUBvUN4IScxImwsXryY4uLieBJ1JGX29vbmt8Dxixcv8vzJyHUKevDgAQUGBvLlR9jqk7c1Fb7lYYmAyRCACw3yZtvZ2ZmMB3ljwyOglzB89uwZ1ahRg8+eqVlB5nokkkdIIiRlx5dz+PDhNGXKFF4MAWCrV6/O9xHLLTNJ1tX3lfsSAYmARMBQCOg1TEZmemSpz5s3L23dupWw5Ehof927d6eoqKhUtT5cI9dlGqrbZD0SAYmAoRHQ2bUGwwI4lGJo8PPPP5Ofnx/nZd26dVSwYEHC0GHHjh2G5k/WJxGQCEgEjIKAzsLw0qVLXLND2CGhDYJDBwcH8vHx4T5WyJMgCPtwOQDBhohQRpIkAhIBiYC5IqCzMHz+/DkXhrD5aboRFC9enLcPIYsEXb58mbsfiP8QojKsuUAjp2+TKOriVtpyLpKSiMjO4wPq2LIMOSiwJFHE2c207VI0P5+rSGPq3KIk5VbOm3YnOeoSbd16liKSHMizeQdqWCQXZ0g5npyXvFu1o9qFdH69VA1KpqhLW2nr2QhKdvSi5h3fJw8dq4m9sppmrntNrb/pRlWc9bKAqe6fg3d1Tet3/PhxljdvXmZnZ8eioqJSXObn58dzkX700UdK/lc3Nzc2aNAg/mvevDnPsYw0g8jPKkkiwBKfsr+GlHqT0zZPc7b8fuJbUOIusYn/sX1zrtpkdjHGiOknE8LYxp/msUuxb9l5dy+K7evlzoicWfvtqnch6Qnb2AHJ091Z78Mx716m65GofayXOzFy+YTtitb1ohh2sFchRpSPdd6p4knXy2U5pvPno0qVKgRn01y5ctGxY8eUzwc88TF7DFuir6+vcrxnz540Y8YM/ps8ebJctK4gI3c4Ajb5qWyNuuRX24UobjdNW3GdXv8LTczZjXTXpwqPIuJUqhIVd9L5Mc0cuMnP6FTAx/T53HMUnZxWVfbkWuitHquUtM5Drq72yt8M79i7krbq067PiepOWEPLlqyjwEbmn7oz7baY5qyOCjiRo6Mj9yk8fPgwD2MOO6GbmxsFBAQQfA/hO4jF6phkkSQR0A0BR6rRvw9dPzWFgo8a21IAAAbsSURBVGb9Ruf6zaC6eR7Tgc2M/Oq60OJ5b2tJfvE3LRs7iQ7Ze5LDncdUdkAA9fe+Rb+PGE8bbjtTo971KXTmQrpedQL9+Wtb8qAoOr1gHM0PLUAFn72g8gP/Sz0qO5MiVuNv0eoxo2lPrkpU9NkVuu/1LY0uMYM6jTtJMTaRFDg0kGwCvianbYG07JYjOT0+Sefi69CgiUOpqbLYJJ7CtvyXuk45RNcdP6QRc0ZR4bcsv9lLSocPiqWQFeMp4K9kKvjyCoVX+Y5+HpjvzbUslv6Z9wVNXH6BbGoPoDkze5O3fQxdWv4uT03sz9Jv30+lrfdc6HFpe3JcPkU7LjaaDMr/CgL6aMchISHMycmJD18w5HV2dub7NjY2bNiwYbyqevXq8WPDhw9Xqr5w4QIfXiOjvRwmK7Dk8J0kdu+P3mziyRA2v4EdI3JhnTY9Ya9uLGYDp19k99c1YXZEzKn9NhaV+Iht+KQAI7ee7MDzOBY01pNRnkbstxvP3uwTsffa/5eNbVOcFawfyIJfJbKwpS2ZI1VgPwXHsMuTKjK7koPZiRdvIY/a0ZG52DdkC28nsoSbi1nfH06wF7Gn2dASxMi9N8MoN+HmTPYfKztWb85NFnv9F1aFiBX2P8RiWBw7P6o0I7JjDRbeZnG35rH37YjZ1gpgf/QsrBomp8dHEnuy7XNWmIqzISejWMhkb0bkw+ZfPcNGlSZGVt5sxJ7LbLu/ByNyZZ/te54GTy/Y8QHv/VvuUSq4vG2/3HsXAeVDqUjHNHbKly/Ph8RNmzblrjQxMTFUuHBhmj17No/fhkvhXA2NsVixYkpNmHEuWrQolSlTRvoaKqjIHY6AbTHqOKw9uVA0bZ62ivasO0812lakFIPNiIM0e0MEUcGy5J7bnty93Iji/qLfNt8hK2srTMFQxc8G0Y9b7lD40e+oYu5IOrFkH8Vy7XAizT0WQQm399CBO/EK6LaO+Sn3q8PUu3JN6rHGg0aOrEOOytk3O7ZFmtF3P4yiXtVj6fS+8xRBRFFhEcpwnsieChbJR/Ye9alpaaLEMxvon1fQBQSlx8dT2j99FT2mIlSthAuV/epP2n9wOXUt+q/65uRFDX3KkGe5AkT0kiJfJFJaPL3B4s29teMi+JJbbQjoJQxRQeXKlWnPnj2EWWXMMD969IjnfxWVQzAi78OAAQPEIe5ig5hvN27ckEuYFFTkzhsErKhAk2/pyxJECUeH0fDgJtSyZErrTXL8c3qeQETWNnyYa21nQxCBcdFx/4JoTTbqJzk5gV7E4oICVK/vBJq17RExFkyjK76dj3aqP4U2/dqNqrAgWjmqJfn03kGRmnZC6zyUJ+4UTeszlULcyxNEklaysScnTCizZFKLQkqPj6SXFBEJPmPoYfRrsslfiRp/4EVpTgTryhNnVAMXrczLgwIB9SMkjum0xZI6mfhaJ6hkIa0IMEpOTqIE+NY4VKc+g2uSNblS/S8bUWE8leyNWElOTCYrt1rUqhwRxT6lmMREehH+ghh5kG+TUqKYsuW3ss5HFeoUJaIQWrPtJsVTEkWe20lnI3CzNxS+61e60GQRXXhwkea2dqHwc5focSJxIUtJiZQQG0Yn/+xP3Sbvplctv6FPK+YmTVnJawKb8U8oFF5l5ZpSudwQ0/9SenzYuFFN3xJEFEz/W3aeYogoKSaM7kS/5VNUJbZRuwamz9Nb+FLiIiqRW60IZFgYaq1NHpQI6IQA/AhX0K/zNtPSwF9p47UEKtNlOHVq1IcG1HGmmODVNH3BeYLO9PL4PJq124n6L51EHyZvpwUrVtOitdFUZ/gymlAplHYevAdpREGrVtFJRdg5ks/IeTTEx4HOffcfKl+jMfXZbk8lXMTsQTIlRRyjXwYMpRmbztOjpGL00eDOVMb5PapROS9R+HLq22cRRbh50ntEdGv6p9R1chDZ5iJ6HbyJdt16TWSdj7wa1KP4nStp5W/TaKt1c5o0qyHdOB9OROF0Zvd5ikxKjw9HqjlqMY2o5URXAxqSd61W1DPgCD2+vIP+ug+F8TIdPHWB9h1CG19R8M7DFOGqnacdQWdo57FHGMhT0M5NtP4vbbjo1Dk5tpBegRpyLEqy4eaBwOtwunb5Hi

Question 3

W5V6By7vZvZ4ZT5S6eIkJvUoRjafIsnLJ84rNHFJvHmWJDb9LzfJ7k5eHwpr7EZxR2+xnlLVmcXGyT6dXjULod70aexZ3p9cMb9MC6OJUunIsSoqKJ5XMl22ehdOWBNRUtV5JcUo7uVVylzgcvlPySHl69RpGOpahc8XzpJCZKjaeU7VPdXO7qiIAUhjoCJYtJBCQC2RsBOUzO3v0rWycRkAjoiIAUhjoCJYtJBCQC2RuB/wOFOdCl3SxFnAAAAABJRU5ErkJggg== />

Question 4

Draw structural formulas for the cis and trans isomers of 1,2-dimethylcyclopropane.

Question 5

Draw structural formulas for the cis and trans isomers of hydrindane. Show each ring in its most stable
  conformation. Which of these isomers is the more stable?



Question 6

7ggY2BGCWvL0009nAwcOzA+x2JZQZz35zne+kzFkWlPuuuuu3HirtRAUfW7xPYvHtZV0+ZCEpYCrvbmvmBbTIhdMNz5Z4o5pQZLzZAhbl8Gyw8ccc0y+xLGEGlMDm5KWClDcAAATYUlEQVSU155wSULidjfVsppwLVqTw721hshqlyDlzXVc/763dPpUU+tlERfvH7BwiylfvkuetDy3hEpJmkkSAgmB2giYQllvNoP9xSwmUxktEFhPHFOs2VDv2Eb369/WX6gVbqfPLU3flrOjuvQsCdnFBWEoHdQMdKT87YmNPpyedJz1DWT+ytiXr2AAsma9WSfyAjqzmJds6lM9kYNhQZzuJp6dRZqSJAQSAk1HwCwIOUbWdNGXykUugpyjJ554It8lb6jSqrPl5zFSTH1sTVFeI9d2TK38ppbWqUt7GBACXgR/XhVaCCVqW/EK2WJ7+qyMALJl6pDOYUqQBZ06O1lwJ+pdzbtUeqeOKZKWSren7wmBhEDPRWDFFVfMCbd1TUxVtEIjYTRJpLZOhjFk8cUXz7cPHDgwTzCsh5gXibW2/nRty0XXEvW2PkPxVtxaxzZ3X5cmDM296XRe90DA7IVG3sHg3RKOTZIQSAgkBEoR8Ap6a2Fcf/31+cyixRZbLH9NvfCDdVXMPChkr732yreZHVFNvD8G+dhvv/2qHdKs7WZ+CUtYcrqaXHLJJfmbK9v0raZtlRyRyk0ItDUCMoPNkLjvvvuqXspaB9ZA+Mc//lH1mLQjIZAQSAhYc8Zsu1pvmfVWWmuyvPTSS9MA9tZbb+UJktaDaQs555xzssUWW6zijDCJzxKe2/oNw106h6Ea00rbewYCwgzeJOndCUIp5keXigRAL6myQiPLIUlCICGQEKiGgDdS+qsl1nmxyqI1F+RPCWdIRHzwwQfzBHIJ45aFbwuxBovVW60BIVziTb3WXZB87SV2vK2NvPOmJXXr0q+3bsmNp3O7DwIykr1NTuxORrNZBBYzsXSqNeLrLencfZBId5IQSAi0BwKWhBbG8G4X+XIWDjQ7oilvnm1uPS0k5f0+FpHyum0v5aP3ShP/m1t2vfMSYaiHUNrfJRCYNGlS/r4HiUGSHCUJiU8WM2a6xE2kSiYEyhGY/GE8fN0dMeFbO8WGA/qU7y35PSVGvzA8bn1iZEz+79YZ5lsz1pnzxXjgpU+jeKtInwEbxnYbLRJfviKt5PTSr1NGx/PDb40nR06O3rMvG9/davXoX9EXPS5e+eO5cdPE78QBOywXs/03I27K6Odj+K1PxsjJvWP2Zb8bW63ePyqeXnrN9L1rINAWsZZUZkIgIZAQSAi0HIFJb5yVrRKRff0Xz2bTrutZVv6kD7I79l7gy/fqLH9y9syYL7JswjvZn3aYK9/We9Uzsr+P/aLspMo/v/hwWLb17JHF/PtmD42pfEw25oFsr/6Rxde2y+74ymtWvsg+HLZ1NntENv++D2XVTq9SatrciRFIxK9r8LpUy4RAQqAHIjD94nvHrc+tE5OWWD761rv/6eeKpZb1ptb3os/8g2LhWZn8c8dSA+eKiJEx26KDYsGZG5sY13umftGv3gVnXTNOvOHKWGfSurH+l0vf/LeGvWOmfv3q17fe/aT9nQ6BRBg63SNJFUoIJAR6HgJT4pMXro9zrn0h/vPhhFj58JNiiwnD4/Jbn403R80Xu/1ypZj3jT/GqWc+EdPP2yfGTlou9vn59rF4rShFJRCnjIpHzzgkTrzz/ei1wLfj4BO2j7j+pLh67NZx6i/WiQ8uGhJHXT4iZhm8Unxm7aGZI2LK6Hjy/CPjhGFvxWzr7x1r/+OsuOi1FeLwIYvHvRf8Od6b4z+x0lqHxfITn4jzhxwVl4+YJQav9FkUp0dMiTHPD43Tr3wzZpnl3Xj4iQmx1mGnxeEb9I2nzjs8TrrlnZhzve1j4IiL49rnIgbvd35ccMCyMfHxC+PY81+NOeYcE2OXPyRO2H35qWGPSreWtrU9Ao3RzbavR7pCQiAhkBDooQhMiVEPHBXrbXhWzLjNBvHZ7WfEcZeOiD4Dl40xV58WZz3YK+ac4YMYtvfucc7IDeKAvZaLd/4+IfrWMPcmPvP7+PEuu8Quu+wRR//pn//DtXe/WG3btWPsg/fFnY9+GvPNPyCW7t8nVtx2w+hz+49i4wMvi093uiyu+/mqMd3E/57We45Ybq3+8fK9d8e1510T/5l/jvh4xLPx/vyrxKzP3Rd33/lMfDThw7jlRxvHgZd9Gjtddl38fNXpojg9Jr8Vl+/5wzjtsf6x3ZFHxAbvXhk/2/W4eHTcnLH8mnPHiHvvimuuHxErHXl0rDHq0Rh67OnxyItXx84b7B/3Lrl3HPmjxeLOfbeIYx8f+7/7SN86BIEaTa5D6pMumhBICCQEehYCox+Io3Y+Pd7e4LbYc+V1YsKdj8URi60cfT++Lh54M2Kpo9aLBfv0jXkW6Bujrj4sfr3//XHG2TPGXONHxGWn/CGe/mRK9Jpx0dj2yANjwH+R6zP4kLhg6NbRLybE3094Km574dWpmE6/yHZx+JZHx8N/vCIuemyHWOWFwbH5LhPjiePvjNGxUKy79oCYud/ischsU0+J6NU7ekXEDMvsEgeftE0cf5IlER+LQ2wknz4RV9w5OmKhdWPtATNHv8UXiamnT79AbDzk+Dh63Erx+ZP3x3MjI2LU2zFyYoTl/RUxy5Lrx9oDl4yXRE9eHxUf/O3yuHdsxDxPXRqnffRqfDzprbj7L2/HhDWWqZ2w+d/qpI+2QSARhrbBtQ1KbcUs6JgSo58fHrc+OTIm9549lv3uVrF65TToGPfKH+PcmybGdw7YIZb7Xxp0g1nUbQBDKjIh0M0Q+OSxP8SN7/WNNX+wRvTrPWPESqvH/BHx8cPD4smJC8aumywRM8Yssf4pZ8X379olfrXLL2OzF86K5f/vp3HCry6JtydHzLTyL2Pvk6drDJnec8UGh+4UC/7xvBh69Kkxeb9TYvc+E+Ppj8ZFxHzRd4bqjufe01XZN+nT+PL0vjHt6b1jppk+j7+duG+8ceAJkadU/KdWVbP4YuzYmBQRc66xdxx7xNLxy9/VOj7tay8Eqjz99rp8F7/OF6PixSf/lcfq2v5Oesccg9aI/o/9IixRuteZH8Ty6y4di66yZsx+zxH5tr0v+CQGrz2gAQbeO+ZYbs2Y7bafxF57HByXvfrlGurT3sNn8cTpB8QRR+8fJz4y5n+7uSjXnC1u+8lescfBl0XV0/93RvqWEEgIVEFg8if/jjExw5cD9eR3444Lb4t/Tv4sXhz+aHw6+2qx1ud3xz3DT42zPtgizrt8t+j/9i1x80vjYo4NL463Jn35Lp1xT/08lp8xwnSIcpm6LZv6LWb9xo9jn0ERY57+MNbecOGYPmaJJVZdKE+OfP2D8RFfjI9xRuzIviyzOLf4LL/IzEvEl6e/Hl+ePi4f8MPxH98VB+98Wtw1/jtx6M7LRt9ijmd5GVN/94qZl1oj1OalG26LNyZETBn1TNz55Mj4Yuox6UtHIJAIQ3NRn/JJPHnGLrHX9e9Onffc3KIaPm9qFnT8Lwu6T5EFHU3Kgo7eM0W/+mnQseaJN8SVl/8xTv9qGnQ0lEXd8I2lAxMCPReBr33zgNh50TFx024bxMY/OC5GLLd2LDT95Bgz6vOIz/4ef35l4Vjw/dvjzKNOjzvenTEWXH372Gop2YilMiVGP3ttnHPNK/nGiU9dEmcPezHeeviKOHfYl+8++OThi+L84W99aeDMOCh2PWidGLDp/vGd+XkmZolVDj8r9h00NoYdsGPsMeTieGVixHRTXo67Hnw5nrrjgXgnIiY8e21c+5iBe0p8/Owd8cgHXCHPxf1vLBaHnbVvDBo7LA7YcY8YcvErMTGmiykv3xUPj5ojFl8wIt78Xey0wynx9HR9Iia+GDf/+dn42/D7492IGDPigfjbM/fGX11k/Evx0Pg94tyfrBozPzUkVhm4cmyw320x4yJzRIM+lFJg0vdWRCAt3NQcMMf/PX6/0/fi0JvejgW3PD7O/9nK8d79T8Qr70wf623TP+656t+x7enHxDcnPRjnnnx5vDj7N2KVGV6P/2/v/uOiru8Ajr88+XFyAw78HQoKpxMTM9TVA3NqpdWyNqeOGa5W5piPpZLhsuWjqPlQVIaMuehhZtLcYz6a4jKaqDUePHSZIioaaMbhYR1w0wMCjh933H32gJORPIYIjqXy5g8eB3y/d9/P8/PHfbjv675XYohlZXg+f9r/GReqgvn5klAObtjKmeFLSF41jf52I7vWpZDrMRgvm4Nxv3iZ6Ksy6CaKfz+JsLh8vGZlULa/9RzleCISzuM/fx+mnd+jsKMK+tVH8T2ZRvyq7RTq7mZC7XukZfsQm3OMZwt+266CvouEtGhMG9eRWarnBxveYkWEndy0b1TU76WR7RPLofNvEqVOs2Pju1zQ6TAfzqUxagWJL0zk4paOKujxaCuPseWVNM7rA6ixRbD8taeIaD3t0Z15kX1E4FYVsFspNn6Nf2go/VuvquS0Ya3uS0CAFkeFBbunizJzE0NHDce328+cLuq+PMMXmlGEFG0kxbWMhBkBbWrOWsxFFrxCgvCoc+EX6NOlJ2lnrZkiixchQR7UufwI9HEfqKvBQrGpkYGGYHztZRSVaggOHYy2k39ZG63FGK06Qg2db9s2CLnVYwI38TUibuJDs6nclSMUPrPV7n8ppZwX1ZbJKAbNVD95NFIF+E5Vf/x0l1o00ldFJuQq84fzlJ5+6qGd5UrVHFJLglDeUb9Wa9YmqbhxKIYtU0dqnarszzOUT+AClWUtVTtjfqzSze0vsuJQxpS7Wi7CwsBpan5MjIqJWaBmR2hbfuc/f5+qVEo5itPUfZ4owl5SJ+odyvh2rNpwsl45yzPUXD1KMylZnbOZ1LYH+ykYqmIP1aj6U6uVofn1x6A56tXVj6ngAVPUxgKr+uS5IAWBauFHFao8Y67So1GTks8pm2mberBf64VdHMqYOlH18Zyi3jDa1BfJ4xUMUYtzapTt+ItqJChNRLzKzP9ALRqKInCh+sh6UaU/olOMWaMKagrUmnBPNSLuiKq9iWddDk0EbnkBR5HaNAHFnXEq4YVUlW+75UckA/g/CnSyvuuxdcqtfcd2Ewc/NOE5aR73Nle9NiNHTICfgWfTc6mo+CtDkhbzdu1cEpdNoMFYzNee9/DE1IE0WfL41Axan0HMfiqc0q/Ad9L9jNJp0A68A23FX1ixwciM5D/ww8ENFL6zmuVLl7J0WTy/y2krhdwV9A527HiHdXODr/J0V9B6MDZX0IVkN1fQY7VU56bjDpmnMNwnkNBvZtBXVdB7Kbl0mPix3vTR/CeDJje9o4ragztmxZPw0jNMqD9OtjuDpsRqb1dBj3YHT3UV1FqPsL05g67OY1viWxytdGA68A9Kmt+8LV8iIAI9I+ARQnRSCi8+3J8xi55hfPszGz3zqHKvt4mALBi6MZHO0hz2nIWIufcxSAN1n/+d7EswZuESvt9fg/OrDNbvrmTYgliidMW8n36KPpHRTBsMlkMZnEHPzOeeJPj0uxyo+g7TfxZF84uC+hlrSZ03gML1C1nzuS/+NUdIfm09qZs3s3lrNg2Bftd3tK0VNKUtFfTRu2dhaD5tWH2Z5g7aU+tJRxPfYQWNg+qWDPpKnNXuSDT9+lF/NInYdZ8xwNC8irr2l8tRi82dQbP4lU3sLVOogt8wtvXl2GvvLn8VARHoloAHQx9YTmLSaqLDdd26B9mp9wp09LzRe0U6HbmLy0czyFcGZoYVsveMlQtZmZgYz9PR3215h0L9xROUqL6ERY2kJiuR5DwXox8aRUluIcd259E04HF+OV3L6V3ZVOmmMtvrKIVl/2R9ajmPv7GdJweV8P7fzlKnf4CtJkfLp6GpujxejvC+gQoadGGTW8pja1E5DThpcGfQLSGz+1tzFN1WUl9N4XONirqS/ctiSNzfwCNxMdzZeQaNxi+ce90ZNJnuDJqTWcexSgZ9Nbv8JAIiIAI3iYAsGLo8ES5sl2toopxDH9uJDLOyf/dZGLeAx64EitoRU5no5yRn+RxWnQpmhBeU5hyg0tdMxic2/KdHE+nvoMpSC/YvOWYJJcRRwAcpq9i4z4x30D1E/2h0y1VZ2w7vRito0E1cSWpsOLaMX7Hg6Xi2ujNozmVl8XFm+woaXJWn2OfOoMnPNjJyRQcV9eEK9O4Mmk1P/JS1J/rihZ2CPbvJ3PPfK+iDp4YR/+bzTPbJI37iGCLvX0Kmdwj6bsdcbVJySwREQARE4H8vIO+S6I6pq45Ll50EDPLt8GNbm6pMGKv7YwjW0VB6gSr/kQTp2q3PGisor9MxJMAbGiuw2D1xlZlpGjqK4d3OoDupoHFSay7C4hVCkEcdLr9AroTM1yfRUUXtasBSbKJxoIFgXztlRaVogkMZ3HkGTbHRii7U0Pm213eEspUIiIAIiEAPCMiCoQdQv9W7bDKSMtnA8444Eh4OZc7rSyVs+lYnRB5cBERABG4PAbk09O0xj22juFJBl++rkQq6TUVuiYAIiIAI3KCAvMJwg4CyuwiIgAiIgAj0BoF2J9V7w5BljCIgAiIgAiIgAl0VkAVDV8VkexEQAREQARHohQKyYOiFky5DFgEREAEREIGuCsiCoatisr0IiIAIiIAI9EIBWTD0wkmXIYuACIiACIhAVwVkwdBVMdleBERABERABHqhwL8BgykaqGD85D8AAAAASUVORK5CYII= />

Shown above are the trans and cis isomers of hydrindane. Note that the cis-hydrindane displays some distortion
from the ideal cyclohexane ring structure. The result is that the trans-hydrindane is the more stable.

"

Question 7

Trans-1,4-di-tert-butylcyclohexane exists in a normal chair conformation. Cis-1,4-di-tert-butylcyclohexane,
  however, adopts a twist-boat conformation. Draw both isomers and explain why the cis isomer is more stable in the twistboat conformation.



Question 8

How many different staggered conformations are there for 2-methylpropane? How many different eclipsedconformatio ns are there?
   



Question 9

Torsional strain resulting from eclipsed C-H bonds is approximately 4.2 kJ (1.0 kcal)/mol, and that for
  eclipsed C-H and C-CH3 bonds is approximately 6.3 kJ (1.5 kcal)/mol. Given this information, sketch a graph of energy
  versus dihedral angle for propane.



Question 10

Write IUPAC names for these alkanes and cycloalkanes.
 
 

Question 11

Each of the following compounds is either an aldehyde or a ketone (Section 1.3C). Which structural
  formulas represent the same compound? Which represent constitutional isomers?


 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

dpost18

  • Sr. Member
  • ****
  • Posts: 345
Answer to Question 1




Answer to Question 2



Answer to Question 3

iVBORw0KGgoAAAANSUhEUgAAAUAAAABkCAYAAAD32uk+AAAgAElEQVR4Ae2dCZyN1RvHH2PfMrYs2bLvWyllKSRbiaKNKCUVLVoIpZSdUiGlRUmJFlkiQioJf3tkJ7IzBmOsM3P+n+/h3N657tx7Z9w7c809z+dz533nfc/7vuc873l/53me85znyaCUUmLJcsBywHIgDDkQEYZttk22HLAcsBzQHLAAaDuC5YDlQNhywAJg2L5623DLAcsBC4C2D1gOWA6ELQcyBbvlMTExsnv3bsmePbuULl06oI/btWuXxMbGSsmSJSVnzpwBvXcgbvbvv/8K7S9RooTkypUrELe097AcsBwIIAeCJgHy4T/88MOSN29eqVq1qpQpU0aKFSsmo0ePlgwZMkjhwoUTNePmm2/WxydMmJDouKd/fv/9d33PUqVKSZUqVfQzevbsKefPn5cHH3xQ32fAgAGuSzdt2iQRERH6d/r0adfxYO0sX75catasqYGP+kVGRkr37t3l7Nmz0rVrV12/3r17ux4PkJv6HT161HXc7lgOWA4ElwNBkQDj4+OlSZMmsmLFCsHLpnz58sKHvXfvXunXr59kyZJFoqOjE7XswIEDGgSQ6LzR6tWrpVmzZnLmzBkt9RUpUkS2bdsm7733npY0o6Ki9OXHjx933QZgzJYtmwB+wfb6+fvvv6Vx48Zy6tQpyZEjhwb9LVu2yAcffCDbt2+XzJkz63qZevJPXFyc5gn1TEhIcNXb7lgOWA4ElwNBkQBnz54t69evl6xZs8qiRYtk8+bNGvxoCpIh0o4BAtO8jBkz6uPm/6S2zzzzjAayatWqyaFDh2Tr1q3yzTff6PvNmTNHA4+na3lepkxBwftEj3vhhRe0Wg7oA+q0HX7w/N9+++0S4DcXc96dJ+ac3VoOWA4EhwNBAcApU6ZokKpRo4bccsstuuZIffv27ZPPPvvML6Dz1FykQ9RL7H2DBg3SEhbl2rVrJ0iCqJiAYlrRuXPnNOBj73zjjTckd+7cuiotWrTQJgCkVnhgyXLAciA0OBAUkWjVqlW6dbfffnuiVgJS+fPn18cAM+xkhlBjfUloqJKosgDdjTfeaC7V2/r168ukSZPkxIkT+v9Ro0bJwoUL9T6gyDXBpp07d+o2oMa614+BAPXYqP6ffPKJNhFQJ8wDgCNSsCXLAcuB1ONAUAAQWxZqrq+Zz7Vr1yZqqS/7HPdlAgUbI/Y1J5lnOW1ozvubSQbnNYHeN+3Gpudev6uuuko/Lqn60S4LgIF+I/Z+lgPeORAUFZiZXz70jRs3en36mjVrxPyYKQUEDE2fPl3bxDjGpAeTGkiPgAy2RWZOnYStDULVhlq2bOm69xdffKElR30iiH+oH2owtjz3+iH9QdQdQiI0bf/uu+9c9dYn7R/LAcuBVOFAUCTAtm3bCrO1s2bN0jOcRrV9/vnnZcOGDXomFjseNkJDBQoUkJMnT+p/UQfbtGmj9wGMefPmSd++fWXs2LHa/oca+f3330vlypV1GSZWli5dqkGuYMGCcvjwYalQoYLr/kh/1AFwCiah4vN87HyA2vXXX68fx+wzk0GAM2WoX9myZV31Q3oFNAF3S5YDlgOpx4GgSID33Xef/qCPHTumJTFscRMnThTscoCZL0Lqe//992Xu3Lny6aef6uLcC3r00Uf1duDAgfLOO+/Izz//LLfddptL8jI2Rl0oDf5069ZNq/9vv/22jBgxQubPn68lWNxiADkA0JLlgOVAiHCAcFjBoEmTJqmMGTMSaivRr0GDBq7/nc8tUaKEPj569GjX4VGjRrnKrlmzRh8/d+6cql+/vsqQIYPrHM/IkiWL+vnnn9Wtt96qj/fs2dN1n3Xr1rnKxsbGuo4HYycuLk7ddtttl9Qvc+bMaubMmerOO+/UdXnsscdcj9+2bZurfocPH3YdtztJc2Dy5Mn6Xb/xxhuuQgkJCaply5aqWbNmCp4a+u2331TDhg1Vjhw51FVXXaU6d+6sduzYoU6dOqVatGihy+/Zs8cUVxMmTND3HjZsmOtYUjtnzpxRb7/9tqL/ZsuWTV199dWKvnf69OmkLrHHQ4gDqKNBIzpZjx49NGDR0ehYW7duVe+++6766KOPEj3366+/1sfXrl2rj7/yyisaFLJmzarWr1+fqCwdfcaMGapVq1a6Y/fq1Uvt27dPl/nxxx/1ff744w/XNUeOHNHHeO758+ddx4O1Q/1mzZqlP0Y+PD6If//9Vz9u7ty5ui6LFi1yPf7YsWOu+tkPx8UWrzt9+/bV/ePGG290lYuPj9fHIiIi1PLly/VxgDJTpkyuAcYMyADhqlWrXMf//vtv133os5RjIPNGDHaeBmOu7dixo7dL7bkQ4UBQAZA21qlTRzECJ4eQgkxHXbJkiUKCc47oyblXWpXlgypdunRaPT7dP9cAYL169VxtNQCYJ08eDYAnT57UUh8A2L59e3X8+HE9AJcpU0b3r+uuu04hmefOnVt5AkAkSW80fvx4xQDN76uvvlIAIgOw6bsMhJZCmwNBmQS5XO0en0BDrBGGrrnmGtmzZ485bLeWAz45gH0YezKTYKwxZ+INdySWJTLJtm7dOp/38FYAp378S++991554IEHdNFGjRrJ5MmTvV1mz4UQB0ISAAE7Zn2dREQVS5YD7hxg9p/15ZC7HymTbzjc16pVS4OfuRaneYALp3o8Dph9f+2116RcuXK6yNSpU01Rr1s8HVj1c+edd7rK8f/999/v+t/uhDYHQhIAixcvrpe6hTbrbO1CgQM4xQ8ePNhjVcyqIFysnATwMSOPryqgCQiynjy5hFsVDu/u90/ufWz5tONASAJg2rHDPvlK4wAS1/Dhw3W1AbRnn33W1QSz+ubIkSOuY+wYqQ8gREVmi3tVxYoVdTlcmFjWaAggHTZsmPZtJbzZq6++qlVpQJRVP+73N9fZbehzwAJg6L8jW0MvHKhdu7b06NFDl3AHQMKSseYa53tUYRM0d/HixXpFDmowAAiQEa+xUqVK+j6sKhozZozrqQSzWLJkif6fiEOsdV+wYIFcd9118scff8iPP/4oHTt21Odxep85c6beb9++faLVTa4b2p2Q4UBQHKFDpnW2ImHNgaZNm+r2A4yPPPKIXk7JBNsTTzyhw6ZVr17dL/4AdExymBiT2B2hzp07ayCdNm2aYDdEnSZYLwsB+FkKfQ5YAAz9d2Rr6IUDqKDuxNJICInv448/1vvY+FhvzkQHgWkJVfbRRx/pCRBT3v0+2Bchgu2iFpvoRYAp1KVLF73cEVsggMdsM+vWoQ4dOljpT3MitP+EpArMrNxXX30l3377rR5VW7duLZ06dXIFNOAcnZYlcITahwiV9csvv+jw+LglWErfHCAg7q233qqjb5uWos4SBAPgypcvnz6M5IZXwSuvvCIrV67Ua8JZq86sL2kZUG+REI29kIuQ+Li3kSCRGs0M8VNPPaUBkXJE70EVZo06yzIJu8Z9UIeJV2npCuBAsN0Uk+sIffDgQb2syDiTmm3hwoVdqylYcsRxVo8Y+uyzz/SxyMhIcyhNt9YROk3ZH9CH16pVS/ctVpX4QyzHmz59uj9FbZk05kDIqcAYjsmmhrqCo+mXX36pI6wcPHhQkAQhVBtm7tyJaCvMClqyHAgkB/D3g5AmkTL5eYsshC2Q1A0EwLAU2hwIKRUYFWLZsmXatwqbDSouhJrLjB7xBZ3uCaHNWlu79MIBbH/Gp5A2MdACgknRW2+9JUywEA0IVdtS6HIgpACQ0FHYVbDhsKTIEOHlOY7B2xlOiyRDJr0ms2+WLAeCwQEjAfp7b9xpkACHDh2qZ4pJ32opNDkQUiowqSJRLQgq6h4evmjRovqccTrFh4uYgRir+eHvZQOKhmYnC8daIfnlyZNHXnzxxXBs/hXT5pACQKI2o1oAbu7EMdwMcFqF2BL81AAgNkMTedr9Wvu/5UBqc4DZYCRAIoMzU2wpNDkQUgBYtWpV7VhK9Gcj6cE2vPhJqs66S8pAgCHuB7i+8MMNwZtdJjTZb2uVnjmA6xbmG9Rhq52E5psOKQAk9BUzaPz69+/v4tibb76pwQ0bYJMmTVzH7Y7lQChzgEF69OjRevKOwdpS6HEgpAAQu9/IkSM1AI4bN04IgYUBmYXoOKuSbJwkSUyS8L87AZzGe9/9nP3fcsBwgH6yYsUKad68uV65gcO9WeZmygRqW6dOHb1iBJsgXg6WQowDwfRDJEIu0XaJxrtixQpFxF5/6P3331f58uVzRdYlfPlbb73lurRYsWL63Pfff+86hpMqztHlypVzHUuLHaIAb9iwQd17772KyMSWQocDpCUYOnSoqly5su4r9KucOXPqXB5EjSafzIgRI/T7C2Q0Z5z76QtdunQJCWb8888/6pNPPlHk55kyZUpI1CmtKoG0FTT68MMPdUcrXry43rKa45FHHlHffPONIg+GNyJ3x5dffqmGDBmizp49661omp+jfiRkeuaZZ3QYfLN6hY/LUtpygLD4X3zxhStRVf78+XWemv/9738aBHhXw4cP1zlcnnrqKVWyZEndV0uVKqX4n9wugUik9c477+j7Llu2LNUZsn//fh2yn0RcpGmgzSRvKlKkiCpbtmyq5MlJ9Ub7+cCgASAAV7BgQfXAAw/oqpDTg4xvzZs31zkUGHEbNWrkdcT9+OOPQza5DImWJk6cqCU9JAmy1NWtW1cNGDDA1cnIPRHuhCR16NAh/XNqAAATx0+cOJGIRQwms2fP1sscTSbARAX8+IfnLFy4UD388MMqV65cOu9H27Zt1bRp0xINpgyyRYsW1RkFTT2MBA8oIhHST1l6SVKvMWPG6GxyflThkiJkM6xSpYq64YYb/NaELrmJnweOHj2q2/r000/rZwJ4SKB33XWXTr71119/KdoJGHNu7Nixft45/RULGgC++OKLKnv27Gr37t2XcI0RlZHV04i7adMmV/lQAkA6DOt7SZVIJjAyj/Fx3X333TrbHWoOBADSqfiRICfciYHC8IOMgIaeeOIJfbxNmzbmkAY9PlRTni2Ji/bu3esq422HvkOyJJNiFbDh46YOSdGCBQv085o0aeKxCAM5GguaS6FChXTZihUrqhdeeEFxbXK0E/OsTz/91OOzUnowJiZGzZkzR7300kuaXwzGpAAlqRP9FWkXc5QneuihhxRSMaAZjhQUAKSjk22rf//+PnlqRlxsL0iE/fr1c12T1gBI554/f7569tlnXVIdKhJpE0lvSU5YJ2H7Q2Lgw73++uudp8J2H/AhaxqDhRMAu3btqvl0xx13aN6QOZByDCzYce+//34tefExo6a589owNCoqSoMc6THhO+YWQHDjxo2miM8tQMm1mDG8EZIltmxyESPtUzds3AyC9FV/gLpdu3Za/fRlAvJWD1Kn/vLLL+rVV19VZMWjz/G9kYL19ddfV7///rvfwIxdFLB05tH29uz0di4oAIiofc011yjUnOSSs6MbAPzpp5/U888/r8EoOSNucp9NeaPaMnFjVNubbrpJDR48WKfnBLA9ER/HzTffrD8kPianJOupfLgc8xcA+XjhGx+04fHmzZs1CKJJoL4aog/88MMPGnj48LG1kuwcCcupZpvyvra7du3SYMbEG6qqv4QKj30RM0/evHl1/YkcwyBOXmpPUhcTELQnOYCDqv7nn3+qQYMGKSRVVHIGCoD75ZdfVvPmzbssOyVaCyAajn024ACIxERHpmNcLhkARPUEhBhxkSSw55BY3Z8R11cdjATqS7X1dR9ULdrNj1He0gUO+AOAp06d0tIfkohzZp87AIjwFIkQYiAsUKCA7gskLscOiwp4ucSAx3OefPLJFN0KkFq8eLGWPmvWrKnvBaA++OCDatKkSYpc14YM4KAxeCJAfPXq1drzoVWrVlrKpG7Vq1dXzz33nJoxY4bPSURP903qGCYpJGcjjSdVLj0eDygAMuJVq1YtYIZeA4CG8XQiOhOdyrjJ0NlQeZIacc21zm1yVVvntZ72sXOiCtFJkUiio6M9FQvLYwYAM2bMqPkDyPGDV/z46JggY2BDkkNCclKfPn10uRo1aujD3bp1054BqG6BJLQVpCAG2UBIQnv27NGDNIM1beO+DOJvvvmm7quYUpDmGID58UwG0XvuuUfb5OBN+fLlFbbSqVOn6gmjQLbX/V4kdueZmHbCiQIKgMbtZcmSJQHhoTsAOm8K2AJ6qBsmYCWgiDriPuJynTfV1syKOe/v7z6d984773R90L169fL30rAoZwDQAJ77FgDENghIAIzuwIYdmWsYWINNqKU8Cxsk7zVQhFkHzQjptUKFCvoZRmVGjWUmmucihTFzjVTrzodA1SWp+9BeAJqZaqTZcKGAAaBxe0E6CxR5A0D3Z6AOUx6DNNIYIy6GambCsM2ZWVtGWKJHm1lb9/sk939GZ/NR81xPdp/k3jM9lTcACMBh00O944dPGnwDAI8fP65dUSiDPctJt99+uy6HKhhsAqiwz1GvUaNGBe1xSLzvvfeedhNDskVw4FggQTcllQ9Ht5iAAaA3t5eUvAyuSQ4AOp+BiosfGK4KOF8//vjjHmdtndekZJ8ZSBxKDQCOHz8+JbdJ19c4AdDbLDCmDAat++67z8UPrkUqxOiPVJQahOM97zNLliwKB+Jwo3BziwkIACbH7SU5HSqlAJicZ1xOWZY2GfBj1tvSpRzwFwBZygjoYCtEikcCQyUEFDFtXI7byKW1SvoIUqDxRWzcuHHSBdPpGWyXDDpMtoQDBQQAcWZNqduLNyaHMgCa2W4DgKFuPGamD/+x1CYA0PDIKQEymcHx1q1bu6rEZBamClOeLeC3atUqV5nU2EE9NXVwn5VOjeen9TPwcwwXt5gMMPty4jMsXLhQh6j64osvdDrAy7mX+7VEeV60aJFw71Aikt2Q84H8shAxCv/6669QquIldSHGYoUKFfQ76tq1q1SsWPGSMsE4QAgzk66gbt26rqRVW7dulT179uiUBoSQN7R7926ZPHmyUN8qVaoIKU7JwZGaRPDdYsWK6ZiURHWmTs60malZl7R4Fv2b/lGjRg2ZOXNmWlQh9Z55OaNNoN1e3OsSqhIgM71GQmC7du1a96qH5P8sKzP1xvGYYBNpIRWGJHPcKuX062RmNtwoXNxiLksFDrTbi3snC0UARB0zPm2ACQvmrxRiUsgAoNmiYuL+kZylY1dKey+nntgCmUAzfMLJOZwoXNxiUqwCE0CyXLly0rRpU527Nxgya6ipwKhzhDhftWqVbi4h+Hfs2KGDtvpqPwFc0zql59KlSxNF2nav8y233CKPP/64bqNNLyA66Vb37t01mwjOu2XLFh2Q151v6fX/5cuX675ANOunnnoqTZo5ceJEGTBggP7OCJj84IMPChHiS5YsqU0obdu21dHiSYtBvnCIwMlTpkyRJ554Qp5++mnv9U7pqBYMtxdnXXBlCTUJkIANRiJgy/Ipf4lwS0wUpeWPkE5XKo0cOVJHOiGuniFWBhHUkx8uSYbwzaxUqZKeQWZG89FHH02RYzFSoHFS5n0TfCDUiMmtlKx/9rcdaekWwzpno22ZLe8BrYXZalbP4CXAMefqq5YtW+pjBNzwRSlSgYPl9kInxpcO9wNi6WGH6dixo682pMp5HFWNkywM54WEo59YqjDbw0NYXw3fO3To4DrLEkSO8TPrwpnBdH4s5jwhn0wZ1w382HHaApmhXr9+vR9XBa+IeyQYQrMR/otQWCtXrgy4M3VaucVs2bJF+3/iGkWEG+Yb+AYxSwB6LDEEAFl8QBknAOI0z3sPGgAG0u0FyYjACVSaqXfTYdkS4oiILISjIrZeSqLLBKIrYg9h3aazbv4umudaVjr4+gVzFA8ED9L6HiZYgXNABACR8BiYALedO3e6PhomqojswkdiPhqiFCWXkAKR2s27ZyIpNVf7eIoEY+pSp04dV73MMdYPs3yQACKBorRwiyE4CXhADEYn4RCPYzzvncEo1QHQBHW8nGgvRP/49ttvddQUGmNenvsWZHce43+ACOYQLTi1lg5NmDDhknrg3+Yvbd++XUfibdq0qQ6W4GyT2Sc3Ax9bWv9Si6f+8s6U8wcAcZ4mGAXSnrMd9FVAkl9ywl2ZZzulQN4Xkc2DRQyE9G1y4DgjwZh+4twa9c95zLlP9BhWtuzYseOyqpsW0WKI9ENbnCuDaAShy3iPAB9RcdhSjhw8mDr4GUEq4BLg5bi9YNNDimMEZ82n80V522dhelLnGR2wURD8IFBre917yoEDB1yx3kw9nEFb3cv7+h9JkAjDnTp10mGdzD2JhGL203KbmtKNL145zxsApO8Q6p0fx1B3jQSIjRPeoR45icAC5qNJSZh9dymQe/EhBoIAaqRUEoGh5gPevt4/qrhzCaav8pxHm2KASIkZgHaapGOp5fBvwqDxnp2Exsggx2odviMDgJ54EHAATK7bCx8TEiMVwXDpqZLux3i5vKzevXvrMN8AEJ75RKrwJi1yH6LCYDhlHTCAGwgiDp2zjgBVoJZlwR8i2lBnAjcgGVvyzAEDgM53YfYNAJqgqoSQchISDFIBH01KIxW5S4GArVPKdD7P1z4hvwiLjzDgnGQx7fG0BRgBSBMaa926dTpHCZKP013H07XOY0iNuG598MEHiWIU+qozbeUbJKNeakSLMYOZM2UCdWT+gW+QgZDcMQYAkcqR9PmZ1AUBBUB/o73AKDoZGdL8eTEAHiGBDOCB8N4IPzzEXJMa0/lynfswiUgjgCdRSFLSWWfOnJkI/Lg/KkWwKCV1DFZdQu2+BgBZH0xKR34Yx50SIO+bd+RcXkc7TBRmPhaAA5sWHxAfGbPK+ED64r27FMhzkIr8IQZxHIudWdmcfdXTPjYuAB3JkIkIb0TdmTTAawLNgox2nu7pfoxBAR58/vnn2kbt7RmcW758ub4vg0EgCbWfSDS8T4QfTF34rCLpETbMCbg8m/PMDfDeeKf8H/RJEG9uL7wAItgCYiatoDuzzf+MQET+8BfwvDEaiYmRjJkwpADzDE9bOgVRYb777rtEzErq/gCxO8gixabVRExS9QyX4wYAvU2CmI8jMjIy0UQF0cPJN8KgiNTNx4L6BCABqPQXZlKRGOgfSUn47lIgUpknW7CnrGye+qTzGGBUtWpVRQBYwMwXIPt676jomIbo897MSKYO8AfTARImEnNSBMDS7stNooQLEyuReJ9E+KYexCIEZ9AasVvyTQOCrMTB4wLNDimeQY9jqTYLnJTbCxUAtcmSZRjpvgXwcGlhJpfMVb4kvKQY7+s4HYYlaSyyN1nB3Oti/oeBxAgkNDm5FjzZvUh8ZMqb7bvvvuurGvZ8kDjgDwAiKZmPBi0BcEIbYeBC0zBh9Z1VpN8wY4p9jJStmFnoH9igkBSRTEz/8CQF8iF6yspm+kxSW74LBlhs2CSEulzAc7bJ0z5SKKBPvybJVFL14jgDBXE90YDcTUkpdYtxl/JoP1I4M/MIMZ5sqgw4vAv3uiLMMEiBP+acUwIMuB+g0+0FdWLo0KFaijMPd99ioKXDTp8+PWiA5+klO48BtKhJqBG+pEPEbOqLpIBrBXY5XpCzXSSRtutmnRxO3X1//QCxBXn6aLC1eZLW3FuBVoGhn+jNSCT0AQCU2UjsdiQmcvYL3E48Pc9ZxuwjvTC7SUBed2DxVA9s7qjswSAkOACOgcJIwaaezi3SNGXImGcGAn/dYnxJeb54QLsXLVqks0UiJSLY8GwjoQPqSJD8nPbzcePG6feFhOmLfDpCG7cXHoIR1Mkcsw/AYMTHnmIq5+vBqXme0RXboTMPsam7py0rC9yP0xktpR0H4D+pB7BzGcJxngjf/JwSAKHKMIvw8WKHZpLJH/Az93VumUFmIGWywYSxBzAAPmxPpD917yvmf9RaQvmzgsTf2VdUPcrzwXfv3t1ZlaDuI8Wi/uJ6k9SEJZMLSJBgAtIrNlcnpUTKc16fFvteARDjY8GCBT2+YJxDGRlSO1ZbIJjEh0OnZjYsqZlljLGmI1977bUp8h8LRF3tPUKHA0hAS5cu1aYTIwwAcs6ZXDQFhAUkFwDBX8J8gzoNqNLvateunaYaB9Ib0hb2etpovgWzNc7hgKY3W54/Up6/PApGOa8AOHDgQFfDEfMBhTFjxgTN5y4YDfR1T9Op8Tdytx0a42xqhWP3VVd7PrQ4gBqJXyGmkV9//TXZUiYAiW+s+yojZjhZ9hUqhPM4KjBmACMFM2lCPQFEX7a8UGmHp3p4jQYze/ZsHU3h66+/lsqVK7uiLXgPr3Blnz1w4IDMmjVLaDMBO3PlyiXLli0TIlFYshwIJAcIokvEkiVLliS67TfffCPt2rVLdCxU/iF+8qZNmyRz5syyf/9+OXr0qLRo0SLVg9YGih9eAZAPv1u3brJmzZpAPe+Kus/58+d1VOAiRYpcUfW2lb0yOECkacJtZcqUSX744Qdd6R49esjo0aOvjAakg1pGpIM2BK0JjHIW/ILG3rC+MWkC6tSpo7WLzp07a17Url1bRo4cGdZ8Se3GWwBMbY7b54U9Bz788ENp3LixzjuyYsUKadOmjTRs2FCmTp0aVgFXQ6EjWAAMhbdg6xAWHDh37pw8+eST2u7Xvn17nSyKSNMQyYfKlCkTFnwIpUZmCqXK2LpYDqRXDhw6dEhPbCxevFiGDRsmL730kg7lbtobTlnnTJtDYWsBMBTegq1DuubA6tWr5a677pITJ05oD4OWLVum6/ZeSY2zKvCV9LZsXa84DuBOVa9ePcmRI4ee8LDgF1qv0AJgaL0PW5t0woH4+Hjp06ePPPDAA9KoUSMNfiSmtxRaHLAAGFrvw9YmHXCAlLGtW7eWoUOHahCcMWOG5MmTJx20LP01wdoA0987tS1KQw5s3rxZ2/twcp48ebLcf//9aVgb+2hfHLASoC8O2fOWA35yYM6cOTqR+KlTp4TZXgt+fjIuDdizQx8AAAtBSURBVItZAExD5ttHpw8OsD52+PDh0qpVK6levbrg3MyqDkuhzwELgKH/jmwNQ5gDSHsdOnSQ3r1763Xz8+fPl6uvvjqEa2yr5uSAtQE6uWH3LQeSwYGEhARp0KCBrFu3TsaNG6dXeCTjcls0BDhgJcAQeAm2ClcmB1B9a9asKQsWLLDgd2W+QrES4BX64my1054DxIj85JNP0r4itgYp5oBXCTA2NlYbc0+fPp3iB9gLLQcsBywHQpUDHgEQkb5ixYrSpEkTmTBhguTNm1cbefFuh4hkkSFDBhkyZIirXUS3jYiI0D8CiVqyHLAcsBwIdQ5cAoBLly6VO+64Q3DoJEJF6dKl5ezZszpQY5cuXXR79u3bp7cxMTGu9gF62bNnJ8eI/rlO2B3LAcsBy4EQ5cAlAEiI7jNnzmiHzoMHD8r27dvl888/1zkAyFUAMCLpeSJCeyd1zlN5e8xywHLAciAtOZBoEiQ6OlrWr1+vEwENHjxYsmXLpuvWqVMn6dWrl0RFRcm0adPSsr722emMA/HRa2XmjJVyFOtK5iJyyz0tpEyO/xoZH7VCps9aJ8c4n6WoNG7fXEpl/e98Wu4lRK+TmTNXSFR8Dinb7G5pWDTLheokRMu6mTNlRVSCXFWlpbS58eoUzDYmSPS6mTJzRZQk5Cwvze6pL0USfa1Jtzx20xR579tz0urZDlI9t2dhJemrw+yMM1Xc4sWLFdnrSYF58uRJ5yl111136RR4bEk6bfKD1qhRQ/EjaTI5diMiInxmvU90Y/tPmHMgTh35pae6VkSJZFfNJu1VcS6OnFbrBl6nMulzNdXQtTHK/0y7rpukcOe82j1tkPpgXayX66PV/EcLK5Hcqu2P0Y5y8erQtLtVHhFVuOtvKsZxJlm70fPVo4VFSeR96qdj/l4ZoxY9erUSyaPaz3HWyd/rw6tcouHBTF4w2UH8MiflzJlT/0tYbyetXbtW+KEum+ud5+2+5YB3DmSUvOVqy0133CiRclrmjvxStpouFrNCpv1bR6oj+eS6VqqWyCWJOqz3G1/G2QQ5vmyI3NvpfVl5LMHLfbJJvqsTfycXCkdI9nz55IL+5OVyX6ey5ROPt/d6XS656Y2pMvGzb2VEo0ivJe1JSSyZ58uXTwA/JjN27dolpUqVcvFo27Zter9w4cJiJj9I5vL666/r46tWrdI5hK3LjItldicZHMhZu7t027pMhq0ZLeNWPiXv3pRdDi6cLuqOmyTy0w/+u1PCSflr4isy+NdsUjbHLjlYrocM6V5Fdn7cWwZ8/4/kbtRV6u14Tz7aWkPe+PodaV1EJHr5eOn/4Q7JX+C4nKz4tLzWuZq4NMOzO2VKv74yL0tVKXZ8k+wt/5KMum+HPNuuvyyNyShHR7wgIzIOkSdyzZIRE3dKzlwHZenKs1L3mYHyQtO8F+t1VnbPeE0eGParbM15m/QeO0ha/FfjC3vx0bJ8fH/5cEd+KXD8pFR8+jXpXC13IkCP3filDBjyiyQUOCWbDleXFwfdduFaFSvrP3hYBk5aLRlv7CFj3+sqVXIkSMy6SZfUqef1u2Tcq8Nl5p5IOVy9sjRcOiAJvtg815q5ToE3ISFBZ3vPkiWLGjVqlOtUVFSUIhN8jhw51LRp01wqcJ8+fVxlVq5cqa+1KrCLJXbHTw7E7/lCdR24VG38sIHKLKIi2/2gDp3Zpj59epRau/db1SSzKMnVVs2KjlMHvr9P5ZeC6pGFJ9TpNa+ospJdNRq3TR3X+6LkmrbqtVfuVCUK1FMjNpxRcbs/Vy1yiqo0aIOK+Xuwqpy5lHruz//MO9Gz71GR2Rqqj/6JU+e3f6qefP1PdVLFquUvlFQihVXX32KUOr9dvXddBpX55rFqe+xW9XZ1UVLoMfVrzGm1qk9pJZJZNfjoH3V65weqfmZRmW54W62c/5gq5FKB49Tuz1uonFJJDdoQo/4eXFllLvWcclRDxR+apToVElWi51IVvXGoqiKi6oz5UfUuLUoyVFG95/2tfnysiBLJpzrOP+GlTifVkh7XXCx37CKPLuWLn68m3RdLpFHg28eEB2sc+/btK2PHjpW5c+dqf0DU2yxZskjTpk3dxzb7v+VAADiQSYrf85K0jRQ5Nn2kTJ73rayq3VoqJ9Ijo2TRmO8lSgpIucJZJVvh8lJQTssv46bLrvgIycA8SuWO8sybM2TX4cXyYuWscvTPz2R+7AUpcOD7f0jU+X9k3sJdcvZijTPlzCtZz/wmXatdL52nFpGXX64rF4w9jiZlKiq3v/i69Hm0lsQuny+rokQkerdEGVVdskmBonkkW5F60rS0SNz/psqy45jJDR2VPz+bL7GCFDhQ3v8jSs7/M08W7jK1EDmyYJRMPihStGZJiSz3uHy9YJFMurfQBQkxV3lpWKeMlK2QX0ROydGTcSJe6pQhAk5cpAye+WJOh/s2EQDCjBEjRuj1jaiyZKlv3ry5rFmzRoMfqfuwBRqHaHfmkfQF8LRkOZASDmTI30Se71JS5PxieanXBmnSolRiG03CWTlxAif7CMlIz43ILBn51k8fk9MXfPQlQp8wT0+Q8ydjhSvy3/ykvDF6lhxQSjb0rSxmIjlXvWHywzsdpLpaI1/1aSF1us6Wo5d04QjJnv20LBvZTYZvLCwVwSFPlDGb5GIiWCVIghP/Es7LyVhdC7n5yTdk9KwDotQG6VvZ1CJeTkUd1fWM2X9MzmXMK1Ub3yLlXXq6p4f5WaeLlybmi6f7heexSwAQ15dly5bJd999JyRwIWEz0iA2wfr162su8f+7776rw34bthUvXlwf4zj+gJYsB/zlgEpIkPjzIFgOqdXtObk+QiRfvS7SqBDdUzE9LJIQJwkZCsoNLcmrEStHYuIk7uRhOalEitzaRK7NchFxlBN5IiRPpbpSTEQ2Tp0l28+KxB9dKXNWRMlFvJTDP70jq5t8Iqv3rZX3W0XK4ZXr5GCciBYnJV7izsfK7qVfS/cOQ2XumRby7IOVJeslAHnRJ+LsIdlxVEQqNJfaVzmksIg8UqmuroVMnbVdzkq8HF05R1ZEmVpklILX3yolRWTDhImyivUF8TGye1eMeHqU5mv0T/K0rzpR0PDDbP19KeFSLt0r+baBIc2BuCP/U58/f5PKX6qdGvT9ZnUybr+aem8j9drq0yr+xHr19StNVaR2g8mvWg74QW07uFQNvq2Eqtx1vJrUr4EqVbeX+nn/EbV0SAOVnXKF2qsxfx75z5Xm/D41q2cdlUtEZS9VSzVsN0AtPGQcbeLV/s8bq7K3dFdvT5yg+jevptqM36bOqji196s71FUiKnP5u1T/WbPVc+XB4cyqXItHVIeaoO01qtOXG9WyfrVU+QbNVMvuY9WXI9qqEsWbqaF/7lSL+lZXESIqY81+6teoOHV+3yzVs04u7epTqlZD1W7AQuWqBm8o7pBa0PsGXc/MxeuoFg+9rMZ/1U/VzcpzK6iXflqqxt4RCbqrkt1+UHuP/ame91Cnh8ZPVf2uy6REMqhqfX9UcwclwZeQ7hWpV7kMPCpcwN62M71w4Jwc3vK37IkvLJUqFJZsl+gxl7bzbNQO2R6VU0qXLZSofNzxAxKbPbfE7tguJ/KUlfJFclycmY2T47v/keNXlZISkZkk4cxB2fHPWSlYtoTkPrdftu2LkBKlC0qG48dE5cknmY7vkE37IqRYhVISmaQCdFaidmyXqJylpWyhbIlmgC/UOEFO7d8sW47mlGsrlJA8Sd7nYmmPdUrcvks5YY84OWAB0MkNu285YDkQVhzwY+wMK37YxloOWA6EEQcsAIbRy7ZNtRywHEjMAQuAiflh/7McsBwIIw78HzwmOx+EY5b9AAAAAElFTkSuQmCC />"

Answer to Question 4



Answer to Question 5





casperchen82

  • Member
  • Posts: 540
Reply 2 on: Aug 23, 2018
:D TYSM


recede

  • Member
  • Posts: 315
Reply 3 on: Yesterday
Gracias!

 

Did you know?

Many people have small pouches in their colons that bulge outward through weak spots. Each pouch is called a diverticulum. About 10% of Americans older than age 40 years have diverticulosis, which, when the pouches become infected or inflamed, is called diverticulitis. The main cause of diverticular disease is a low-fiber diet.

Did you know?

If you use artificial sweeteners, such as cyclamates, your eyes may be more sensitive to light. Other factors that will make your eyes more sensitive to light include use of antibiotics, oral contraceptives, hypertension medications, diuretics, and antidiabetic medications.

Did you know?

Fungal nail infections account for up to 30% of all skin infections. They affect 5% of the general population—mostly people over the age of 70.

Did you know?

A recent study has found that following a diet rich in berries may slow down the aging process of the brain. This diet apparently helps to keep dopamine levels much higher than are seen in normal individuals who do not eat berries as a regular part of their diet as they enter their later years.

Did you know?

The heart is located in the center of the chest, with part of it tipped slightly so that it taps against the left side of the chest.

For a complete list of videos, visit our video library